数学学习计划

时间:2024-10-09 学习计划 我要投稿

精选数学学习计划范文汇总5篇

  时光飞逝,时间在慢慢推演,我们的工作又迈入新的阶段,不妨坐下来好好写写计划吧。那么你真正懂得怎么制定计划吗?下面是小编为大家整理的数学学习计划5篇,欢迎大家分享。

精选数学学习计划范文汇总5篇

数学学习计划 篇1

  1 第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

  2.了解函数的有界性、单调性、周期性和奇偶性.

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

  6.掌握极限的性质及四则运算法则.

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  2第二阶段复习计划:

  复习高数书上册第二章1-3节,需达到以下目标:

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的高阶导数.

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  3 第三阶段复习计划:

  复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

  1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

  2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.

  3.掌握用洛必达法则求未定式极限的方法.

  4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

  5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的`图形.

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  4 第四阶段复习计划

  复习高数书上册第四章 第1-3节。需达到以下目标:

  1.理解原函数的概念,理解不定积分的概念.

  2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  5 第五阶段复习计划

  复习高数书上册第五章第1-3节。达到以下目标:

  1.理解定积分的几何意义。

  2.掌握定积分的性质及定积分中值定理。

  3.掌握定积分换元积分法与定积分广义换元法.

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  6 第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

  2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。

  3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

数学学习计划 篇2

  1.继续抓好集体备课。每周一次的集体备课必须抓落实,发挥集体智慧的'力量研究数学高考的动向,学习与研究《考试大纲》,注意哪些内容降低要求,哪些内容成为新的高考热点,每周一次研究课。

  2.安排好复习内容。

  3.精选试题,命题审核。

  4.测试评讲,滚动训练。

  5.精讲精练:以中等题为主。

数学学习计划 篇3

  一、熟悉大纲。

  1.不超纲,注意紧扣教材。

  回到教材,并非简单地重复和循环,而是要螺旋式的上升和提高。对教材内容引申、扩展。加强纵横联系;对教材的习题可改动条件或结论,加强综合度,以求深化和提高。

  2.全面复习。

  复习目的不全是为升学,更重要是为今后学习和工作奠基。由于考查面广,若基础不扎实,不灵活,是难以准确完成。因此必须系统复习,不能遗漏。

  3.狠抓双基。

  重视基本概念、基本技能的复习。对一些重要概念、知识点作专题讲授,反复运用,以加深理解。

  4.提高能力。

  复习要注意培养学生思维的求异性、发散性、独立性和批评性,逐步提高学生的审题能力、探究能力和综合多项知识或技能的解题能力。

  5.分类指导。

  学生存在智力发展和解题能力上差异。对优秀生,指导阅读、放手钻研、总结提高的方法去发挥他们的聪明才智。中等生则要求跟上复习进度,在训练中提高能力,对学习有困难的学生建立知识档案,实行逐个辅导,查漏补缺。

  二、重视基础。

  基础知识、基本技能、基本方法始终是中考考查的重点。在备战中考中,应夯实基础,抓住一个“基”字,追求一个“效”字。要注意知识之间的内在联系,学会构建知识网络,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合,寻找解题途径、优化解题过程。2.强化题组训练,感悟数学思想方法

  在备战中考的第二阶段(4、5月份),应突出重难点,强化一个“精”字,兼顾一个“深”字。做综合题,要养成解题后反思的好习惯。同时总结出所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化。对于几何题,可以多观察图形、多联想、多变式,形成一题多变。3.加强模拟训练,注意解题规范、提高解题速度

  在备战中考的第三阶段(6月份),应多做些模拟训练,立足一个“透”字,注重一个“准”字。强化对知识的掌握和答题速度、节奏、经验等方面的积累训练,训练考试能力。在此特别指出的是,解答题过程分比最后的答案重要得多。在平日的作业、练习、考试都要进行规范书写,到了考试才能减少无谓丢分。4.用好“错题本”,攻克薄弱点

  编制“错题本”深入纠错,是非常有效的复习方法。把历次考试中不会做的题、做错了的题进行认真的分析,总结经验教训。并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正。在中考前发现的问题越多,纠正越及时,提高也就越快,信心就越足。5.立足课堂,紧跟老师

  复习课基本以练习为主,同学们在复习课上要做好信息处理和分析,把握好课堂复习和自我复习的关系。另外,上课不能只听老师讲,还要敢于提出疑问,积极提出自己新颖独到的思考方法和策略。

  三、复习要点。

  1.以教材为本,抓好章节复习

  在期末复习中有必要制订一个可行的学习计划,先以教材为本把各章节中的知识点系统梳理,构建有自己特色的知识板块。在复习过程中要特别重视各章节的重点内容,典型例题,教材习题,动脑总结这些例题的解题思路是怎样形成的,提供的方法能用来解决哪些问题,重视这些题目的变式训练,拓展自己的视野,做到举一反三,触类旁通,才能短时间出效率,更好地发展自己的能力。

  2.提高课堂45分钟的听课效率,搞好查缺补漏工作

  期末复习期间必须跟紧老师,课堂45分钟的复习内容,用心聆听,细心体会,动脑琢磨,对已学过的知识回忆感悟体会,巩固掌握不扎实的部分,搞好查处补漏的工作。对于一些容易出错的概念辨析有必要把涉及的概念在理解的基础上记扎实,如“判别方程组是否属于二元一次方程组”“非负整数解概念的理解”“算术平方根与平方根的区别”“数的分类”“有关各类三角形高的画法”“三线八角的确定”“点到直线的距离与垂线段的关系”等,另外对于自己在复习期间出错的`问题不要一概以“马虎”取而代之,一定要重视这些问题,找出问题的病根,是审题不细出错,还是计算问题,题意理解中的问题还是概念掌握的不准确,“对症下药”才能不犯二次错误,也从中积累了一定的方法培养了自己的纠错能力。

  3.提炼归纳数学方法,培养数学思想

  在复习过程中,光重视知识的学习是不够的,因为在解决具体问题时出现的障碍,往往不是知识本身不够带来的,而是思想不对头造成的,所以我们要特别注意学习方法如“数形结合”“化归转化”“分类讨论”等数学思想方法,其中数形结合的思想是很常用的,如“对不等式及不等式的解集的理解”“对无理数的认识”中都有数形思想的充分体现,这种数形思想既形象,又直截了当,能给人清晰的解题思路,适于初二学生的认知特点,我们在复习的过程中可大胆适用这种思想方法。

  数学作为一门应用科学,既源于社会生活,反过来又服务于社会生活。每位学生要自己去寻找,收集联系实际的数学问题,尤其是新教材更侧重的是对学生应用能力的考察。在本册中方程组与不等式有关的实际应用问题就是复习中重中之重,往往这部分内容是大多数同学感到紧张的部分,越是这样在复习中应有意识的加大力度,有的放矢地进行适当的解应用题的一般方法训练:“认真阅读,理解题意——抽象概括,建立数学模型——解决问题——解决实际问题”。

  4.加强综合训练,提高解题速度

  在复习的最后环节中应加强综合试题的训练,这样使各章节的内容系统化、条理化。并且在解题时间、技巧、方法上也搜集了一些经验,为期末考试做了充分的思想上的准备。

  四、三轮复习第一阶段。

  第一阶段是开展基础知识系统复习,即双基训练阶段。主要任务是夯实基础,完善知识框架。

  (1)按章节整理

  复习时可以按教材安排的先后顺序,采用图表法将有关的知识点和典型的习题一章一章地整理出来。

  (2)按知识板块整理

  这种方法就是打乱章节界限,采取“切大块”的方法把关系紧密的知识整理到一起。比如我们使用的《中考指要》,它的结构就划分为《数与式》、《分式和二次根式》、《方程和不等式》、《因式分解》、《函数》、《统计初步》,图形部分内容也可分为《直线型》、《三角形》、《四边形》和《圆》等四大板块。这样,可使我们的知识系统化,给记忆和运用带来方便。

  (3)重点内容重点记

  教材上许多重要的知识及习题结论,一定要熟记、熟用。准确记住一些重要结论和公式,做选择、填空题时既可提高正确率,又可缩短时间。例如,设等边三角形的边长为a,则它的高为?半径为?边心距为?面积为?在这五个量中,任意给一个量,都可以马上求出其余四个量。

  (4)同学之间相互提高

  自己整理、熟记教材知识后,想检验自己是否已达到熟练掌握的程度,同学之间可以互相提问、检测、辨析、讨论。通过彼此的提问和回答,取长补短,查漏补缺,共同提高和进步。当然不仅仅是看书整理知识,还需要做题。

  总之,这一阶段应该注意这样两点:1.“读薄”教材,通读加精读,理解、识记书中的概念、定理、公式、法则,并从中概括出知识的前后联系、区别,进而在自己的头脑里形成知识的系统。2.做题。每天应有计划地做好十几道基础题。注重例题中包含的各种基本技能和技巧,找出一类问题的解题思路,进而举一反三,融会贯通。重视“双基”,抓好了第一轮复习,对尖子生的冲刺、中等生的跨档、后进生的提高,都有好处。

  五、三轮复习第二阶段。

  第二阶段是专题训练阶段。主要是针对热点,抓住弱点,开展难点知识专题复习,综合提高,强化冲刺。

  1.多思、多问、多练。无论是跟随老师进行专题复习,还是自己针对薄弱环节进行的专题复习训练,一定要明确这个专题的主题是什么,具体有哪几类常规思路。既做到一题多解,训练发散思维,又做到多题一解,训练收敛思维。要寻找差异——因为做了大量雷同的练习,容易造成对相近试题的判断失误,这是非常危险的,也是第二轮复习时要格外注意的。

  2.要抓住基础概念,将其作为技巧突破口。数学试题中的所谓解题技巧并不是什么高深莫测的东西,它来源于最基础的知识和概念,是基本知识和技能掌握到一定程度时的一种表现形式。

  3.要抓住常用公式,理解其来龙去脉。这对记忆常用数学公式很有帮助。此外,还要进一步了解其推导过程,并对推导过程中产生的一些可能变化进行探究,这样做胜过做大量习题,并可使自己更好地掌握公式的运用,往往会有意想不到的效果。

  4.勤练解题规范。由于新课程改革的不断深入,中考越来越注重解题过程的规范和解答过程的完整,只要是有过程的解答题,过程比最后的答案要重要得多。所以,要规范书写过程,避免“会而不对”、“对而不全”的情形。

  5.要抓住数学思想,总结解题方法。中考中常出现的数学思想方法有分类讨论法、面积法、特值法、数形结合法等,运用变换思想、方程思想、函数思想、化归思想等来解决一些综合问题,掌握以二次函数为基架、一元二次方程为基架、圆为基架、三角形为基架的综合题的解题规律。在脑海中将每一种方法记忆一道对应的典型试题,并有目的地将较综合的题目分解为较简单的几个小题目,做到举一反三,化繁为简,分步突破。而在与同学的合作学习中,要将较为简单的题组合成较有价值的综合题。中考题最大的特点是浅、宽、新、活,因而,在复习中要回避繁、难、偏、怪题。训练时既要有灵活的基础题,如选择、填空,又要有一定的综合题。

  六、三轮复习第三阶段。

  第三阶段是综合训练阶段(模拟练习)。这一阶段是心理和智力的综合训练,也是中考复习的冲刺阶段,是整个复习过程中不可缺少的最后一环。

  1.总结解题规律,巩固提高能力。跳出题海,以总结归纳为主,用理论性知识来武装自己的头脑。尽管近几年中考中综合性题目越来越灵活,但万变不离其宗。通过对解题规律的总结,对解决这类问题还是很有效的。

  2.回归教材,重温基础知识和重点内容。较长时间的综合复习,教材上一些最基本的知识点、易错、易混淆的公式就被遗忘了,所以在考前的几天里一定要回归教材。首先要认真仔细阅读教材,梳理知识点。对教材上的习题要做到一看就会,一做就对。另外,以几套模拟试题为线索,查找对应知识点。

  3.回顾易错处,争取拿高分。在大量的习题及模拟训练中,许多同学都有一个共同的问题,就是会做的题没有做对。这类题目往往出现在基础题中。要想减少失误,可以把做过的错题摘抄下来,分门别类,归纳总结出错的原因。然后,对症下药,以一带十,从而解决一类错题。

  4.查漏补缺,提高综合解题能力。用与中考数学试题完全接轨的、符合新课程标准及命题特点和规律的、高质量的模拟试卷进行训练,每份练习独立完成,并严格按照中考要求及标准格式答题,纠正答题过程中的不良习惯。并对每次训练结果进行分析比较,既可发现问题,查漏补缺,又可积累考试经验,培养良好的应试心理素质。

  各阶段复习目的不同,复习角度和方法也不相同。三轮复习不能机械重复,而是一个螺旋上升的过程。所以提醒广大学生,无论哪个复习阶段,都不可以有放松的思想。走好三个阶段,一定就有三次提高。

  七、结语。

  初三数学复习计划如何安排?初三数学的学习计划?初三如何计划复习数学?只有一步一个脚印,扎扎实实,做好温课备考准备,才能取得理想的成绩。在最后的复习阶段拿出饱满的情绪,积极的状态,全身心的投入到复习之中。

数学学习计划 篇4

  1学习阶梯划分

  一阶基础全面复习(3月~6月)

  二阶强化熟悉题型(7月~10月)

  三阶模考查缺补漏(11月~12月15日)

  四阶点睛保持状态(12月16日~考试前)

  2参考书目

  必备参考资料:

  数学考试大纲

  《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。

  《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生

  《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。

  历年真题

  3复习计划

  1、一阶基础,全面复习(3月~6月)

  学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基——基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。

  复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的.配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。

  2、二阶强化熟悉题型(7月~10月)

  本阶段是考研复习的重点,对成败起决定性作用。大体可以分两轮学习。

  第一轮暑期强化:7~8月

  学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧

  复习建议:参加考研教育网强化班学习,根据老师辅导讲义认真研读,做到举一反三。这一时期大课老师所教学的例题都是经过严格筛选、归纳,可以说会更准确、更有针对性。在学习过程中对重点、难点一定做笔记,便于下一轮复习。

  第二轮秋季强化:9~10月

  学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求

  复习建议:根据老师课堂所讲真题课后进行专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。

  3、三阶模考查缺补漏(11月~12月15日)

  学习目标:这一阶段的目标是保住自己在前两个阶段的成果。1、通过对以往学习笔记的复习全面掌握考试要求; 2、进行高强度(高于考试强度)的冲刺题训练,进入考试状态,达到考试要求。

  复习建议:建议考生要做到:1、通过做题进行总结和梳理(做题训练应当重点放在按考试要求的套题);2、复习教材和笔记进行必要的记忆,对基本概念、基本公式、基本定理进行记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;3、开始进行模拟试题或者真题的实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。

  4、第四阶点睛保持状态(12月15日~考试前)

  学习目标:考前重点题型,应考技巧训练,保持状态

  复习建议:多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电、手生。同时还要调整心态,积极备考,以良好的状态到考场。

  4建议学习时间

  每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的复习时间安排在每天早上9:00~12:00(可根据自身情况适当调整,但此时效果最好)。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。

数学学习计划 篇5

  今年我很荣幸成为了宁蒗县小学数学名师工作室的一名学员,我希望通过一年的学习,能使自己的数学教学水平得到一定的提高,教研能力在实践中得到培养和锻炼,通过学习提高自己的理论水平,同时不断更新和丰富自己的知识面,努力提高自己的综合素质,以便在以后的工作中更好地服务学生,更好地服务教学。因此,特定以下学习计划:

  一学习目标:

  1、加强数学学科知识的学习,提高自己的理论知识。

  2、加强教学研究,提高自身的教学水平。

  3、开展课堂展示,提高实践能力。

  二 对个人的学习工作要求

  1、不断丰富自己的理论知识。多读有关教育学、心理学的文章及书籍,理解新课标的理念,数学课程标准的基本理念、目标和各阶段的要求,多读有关教育教学的杂志和报刊,如《云南教育 》、《中国教育报》等,经常关注就教育教学动态,提高自身的数学教学素养。

  2、努力形成自己的教学风格。在实践教学中,认真上好每堂课,钻研教材,勤写教学反思,主动承担公开课的教学任务,每年最少承担两次学校组织的公开课

  教学任务,加强“设疑导学”教学法的实践与探索,学习名师的教学经验和教学特色,努力形成自己独特的教学风格。

  3、勤于钻研。积极参加学校组织开展的教育科研活动,把握基础教育改革的动态,特别是小学数学学科研究的动态,善于用教育理论来指导教学实践,在学校教学改革中发挥带头、示范和辐射作用,逐步提高自身和学校的教育科研能力。

  4、学会观察、评价、改进课堂教学的技术和策略,有效提高课堂教学效率,打造优质高效课堂,有效减轻学生课业负担,使学生会学、乐学、好学。

  三 计划完成的主要工作内容

  1、深入研究自己所教的新课标人教版的小学数学教材体系,研究其编排的特点、内容及方法等,能博采众长,正确把握教材的编排意图,提高自己的'教学水平。

  2、了解小学数学教学的新成果与新视点,明确数学改革的方向,自觉更新知识结构,改变课堂教学模式,灵活运用教学方法,建立新型师生关系,有效提高课堂教学效率。

  3、积极参与工作室组织的各项研究,学习活动,根据工作室的要求积极收集,上传与工作室研究课题有关的教学资源。

  四本年度的工作安排:

  1、积极参加工作室的常规活动。

  2、建立业务学习,工作交流例会笔记。

  3、进行教育理论的学习和教育教学前沿信息的收集和处理工作,关注教育改革和发展的动态和趋向,提高自己实施新课程的能力。

  4、积极参与小组学习的课例分析、课题交流、专题研讨等活动。

  xxx

  20xx年9月25日星期三