有理数的加法说课稿

时间:2024-07-03 说课稿 我要投稿

有理数的加法说课稿

  作为一位兢兢业业的人民教师,就有可能用到说课稿,说课稿有助于教学取得成功、提高教学质量。说课稿应该怎么写才好呢?下面是小编为大家整理的有理数的加法说课稿,希望对大家有所帮助。

有理数的加法说课稿

有理数的加法说课稿1

  1.教学目标

  1.1地位、作用

  在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

  1.2学情分析

  在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂。因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障。围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力。

  另一方面,课本知识的传授是符合学生的认知发展特点的在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础。

  1.3教学目标

  根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:

  知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用。

  能力目标:通过情境的设计,培养学生的探索创新精神。在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力。

  情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣。

  1.4教材处理

  根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算。

  2.重点、难点

  2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则)。

  2.2教学难点:异号两数加法的实际意义及法则的归纳。

  3.教学方法与教学手段

  本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力。

  在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区。

  4.教学过程:

  4.1创设情境,让学生的思维“动”起来

  [生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲。从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志。将跑道抽象为数轴,起跑点为原点,将生活问题数学化。

  说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索。

  4.2体验进程,让学生的思维“活”起来

  “数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲。

  [开放式探索]刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米。问刘翔两次以后的位置可能在哪里?

  设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性。它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟。这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题。在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化。

  教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导。

  预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方。这是一个距离与位移的概念混淆并且教学中不宜新增概念。 ②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃。

  处理方法:①教学中学生思维上的.弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈。②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼。③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区。

  教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题。

  4.3探究规律,让学生的思维“跳”起来

  用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少。

  在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲。让学生作课堂的主人,陈述自己的结果。对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径。

  预先设想学生思路,可能从以下方面分类归纳,探索规律:

  ①从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)

  ②从加数的不同数值情况(加数为整数;加数为小数)

  ③从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)

  ④从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)

  ⑤从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)

  教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏。

  4.4注重反思,让学生的思维“深”下去

  [反思应用1]例1:计算(—3)+(—9);(—4。7)+3。9;

  [反思应用2]例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数?

  设计意图:当数学知识转化为表象知识时,一定要让学生从形式化过渡到符号化与数字化。这两例都是课本例题,教学过程中现在要减少学生的表象思维,让他们尽可能习惯用法则做题。培养学生的“数学化”意识。

  4.5拓展应用相结合,让学生的思维得以升华

  [练习1]计算15+(—22);(—13)+(—8);

  ;

  [练习2]用算式表示下列结果:

  ⑴温度由—4C上升7 C ⑵收入7元,又支出5元

  [练习3]火眼金睛找错误:

  +

  =-1。7

  ②文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米又接着向西走了60米,此时小明的位置在()

  A.文具店B。玩具店C。文具店西边40米处D。玩具店西边60米处

  C组:①找规律:从表1中找规律,并按规律在表2的空格里填上合适的数

  ②为了体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的马路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,—4,+13,—10,—12,+3,—13,—17

  ⑴如果最后一名老师送到目的地时,小王距出车地点的距离是多少?

  ⑵若汽车耗油量为0。4升/千米,这天下午汽车共耗油多少升?

  设计意图:分层设计练习,满足不同基础水平和不同思维层次的同学的需要。A类题训练学生的定向思维,培养基本技能;B类题主要训练学生的发散思维,培养学生的灵活性;C类题具有一定的挑战性,培养学生思维的深刻性,同时在挑战的过程中,培养学生的意志力。

  [板书设计]

有理数的加法说课稿2

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

  2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)

  教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2、能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想;(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。

  二、教材处理

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的.目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  三、教学方法和数学孚段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计。

  1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

  2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

  3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

有理数的加法说课稿3

  大家好,今天我要说课的课题是人教版数学教材七年级上册第一章第三节《有理数加法》的第一课时,《在黑板上写§1.3.1有理数的加法》我们知道,有理数是运算的工具,是解决实际问题的一种模型,而本节课是有理数运算的起始课,是学好后续内容的重要前提。下面我将从教材分析、教材处理、教学方法和教学手段、教学过程向大家阐述我对这节课的理解与设计。

  一、说教材:

  我从分析本节课在教材中的地位和作用,结合教学大纲来确定本节课的教学目标、和重、难点。首先来看一下本节课在教材中的地位和作用。

  (一)地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

  就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  从以上两点不难看出它的地位与作用的重要性。

  (二)课程目标

  接下来介绍本节课的教学目标以及重难点。

  课程标准中规定,在有理数加法的第一课时,要使学生理解有理数加法的意义,理解有理数加法的法则,并运用法则进行准确运算。因此根据课程标准的要求,确定本节课的教学目标。

  1、知识与技能目标:

  ⑴了解有理数加法的意义。

  ⑵理解并掌握有理数加法的法则。

  (3)运用有理数加法法则正确进行运算。

  2、过程与方法目标:

  (1)培养学生的分类、归纳、概括的能力。

  (2)在探索过程中感受数形结合和分类讨论的数学思想。

  (3)渗透由特殊到一般的唯物辩证法思想

  3、情感态度与价值观目标:

  (1)激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

  (2)培养学生对数学的热爱,培养学生运用数学的意识。

  (三)重点、难点

  有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可。因此本节课的重点是:有理数加法法则的理解与运用。

  由于本阶段的学生很难把握住事物主要特征:如同号异号、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解,尤其是理解异号两数相加的法则。

  二、教材处理

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念。《在黑板上写复习》因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用身边的实例,让学生和我一起参加探索发现加法的法则。在法则的得出过程直接地向学生渗透数形结合的思想,并通过一些变式练习以及书本习题达到训练双基的.目的。

  三、教学方法与教学手段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把老师的点拨和学生解决问题结合起来,为学生创设情境,使学生在轻松愉快氛围下学习。

  四、教学过程的设计

  我将教学过程分为复习、引入、探索、归纳、巩固、总结、作业七个部分。

  1、复习:本节课是在之前学习了有理数意义的基础上进行的,学生已经牢固的掌握了正数、负数、数轴、绝对值,所以我没有把太多的时间放在复习旧知识上,只是选取了与本节课密切相关的绝对值部分的内容,即给出利用绝对值比较大小的题目,因为异号两数相加的情况关键在于比较两数绝对值的大小,我给出的是简单的:

  利用绝对值定义比较大小

  (1)|-2|与3(2)|-3|与3(3)|-5|与0

  2、在课堂的引入上,我一开始想要直接用课本的例子,但是它过于直白,不能很好的引起学生的注意,所以在例题的基础上填充体育课的背景,并用无处不在,无所不能的小明做主角,把情境从书上搬到学生身边。《在黑板上写问题》

  问题:在一天东西方向的跑道上,小明站在0点处,如果他第一次行走了5米,第二次行走了3米,问两次行走之后,小明处于什么位置?

  3、第三部分就是对上面问题展开的探索,由于法则的得出是知识在学生头脑中发生,发展,形成的过程。首先借助模拟小人在坐标轴上来回的运动帮助理解问题,由题意可知小明的四种运动情况,即:两次都向东或者向西,一次向东一次向西以及一次向西一次向东。《在黑板上写分析讨论》

  1、同向①先向东走5米,再向东走3米:(+5)+(+3)=+8 ②先向西走5米,再向西走3米:(-5)+(-3)=-8

  2、异向③先向东走5米,再向西走3米:(+5)+(-3)=+2 ④先向西走5米,再向东走3米:(-5)+(+3)=-2方向的不同得出同号异号两个大类,最后让学生试着写出由数轴转化为数学式子表达的形式。

  4、归纳:让学生以小组的形式,观察式子,思考讨论他们自己得出的结论。由于规律的得出建立在至少三个同类的形式上,而且绝对值不等的异号两数相加的情况又是本节课的难点,所以我会多给出这类的形式,帮助学生思考。最后我在他们的基础上归纳结论,并补充互为相反数的两数相加的情况以及与0相加的情况,得出这节课学习的内容:有理数加法的法则。《在黑板上写有理数加法的法则》

  1,同号两数相加,结果取相同符号,并把绝对值相加。

  2,异号两数相加,结果取绝对值较大的加数的符号,并将较大的绝对值减较小的绝对值。

  3,互为相反数的两个数相加得0.4,一个数和0相加,仍得这个数。

  5、巩固:在习题的配备上,我注意学生的思维是一个循序渐进的过程,所以练习部分我先采用基础的训练题。《在黑板上写练》练:1,7+9= 8+(-3)= 2,-11+(-5)= 9+(-12)=由学生自主完成,在讲解中强调解题的关键,一观察、二确定符号、三求和,并在黑板上写出详细的解答过程。紧接着通过两个例题提升对有理数加法的理解,《在黑板上写例》

  1,用算是表示:温度从-3度上升7度之后的温度。

  2,小红本来在底下二层楼,乘坐电梯上升五层后,她在第几层?

  6、总结:小结归纳不应该仅仅是知识的简单罗列,二应该是优化认知结构,完善知识体系的一种有效手段,所以我通过以下三个问题让学生发挥主体作用,自主完成总结工作。

  A,本节课学习,你学会了哪些知识?B,本节课学习,你最大的体验是什么?

  C,本节课学习,你掌握了哪些学习数学的方法?

  7、作业:作业是为了达到巩固和发展的目的,所以我选择了书本课后基础题和拓展题两个部分,是发挥作业反馈教学,巩固提高的作用。

有理数的加法说课稿4

  今天我将要为大家说的课题是:有理数的加减法第一课时

  首先,我对本节教材进行一些分析

  ㈠教材结构与内容简析

  本节内容在全书及章节的地位:略

  ㈡教学目标:

  1.知识与技能:

  使学生掌握有理数加法法则,并能运用法则进行计算;

  2.过程与方法:

  在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力

  3.情感态度与价值观

  通过师生合作,联系实际,激发学生学好数学的热情,感受加法无处不在,无处不有。

  ㈢教学重点:有理数加法法则。

  ㈣教学难点:异号两数相加的法则。

  下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  ㈤教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,

  我在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点,应着重采用活动探究式的教学方法

  ㈥学法

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  1、理论:记忆加法法则;

  2、实践:足球赛记分动笔动手;

  3、能力:加法运算能力

  ㈦教学准备:课件或章前足球赛图

  ㈧教学设计:

  一、创设情景,孕育新知

  活动一:观摩足球赛:

  足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

  (1)上半场赢了3球,下半场赢了2球,那(3)(2)=5.①

  (2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)(-1)=-3.②现在,请同学们说出其他可能的情形.

  答:上半场赢3球,下半场输2球,全场赢球,也就是

  (3)(-2)=1;③

  上半场输了3球,下半场赢了2球,全场输了1球,也就是

  (-3)(2)=-1;④

  上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

  (3)0=3;⑤

  上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)0=-2;

  上半场打平,下半场也打平,全场仍是平局,也就是

  00=0.⑥

  二、自主探究,获取新知

  活动二:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?

  这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数。

  活动三:

  应用举例变式练习

  例1计算下列算式的结果,并说明理由:

  (1)(4)(7);(2)(-4)(-7);

  (3)(4)(-7);(4)(9)(-4);

  (5)(4)(-4);(6)(9)(-2);

  (7)(-9)(2);(8)(-9)0;

  (9)0(2);(10)00.

  学生逐题口答后,教师小结:

  进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

  解:(1)(-3)(-9)(两个加数同号,用加法法则的第2条计算)

  =-(39)(和取负号,把绝对值相加)

  =-12.

  活动四:教学22页例1、例2(详见课本)

  三、巩固练习,运用新知

  活动五:练习:23页1.2

  四、归纳小结,升华新知

  同学们分组讨论,学习了哪些知识?并交流。

  有理数加法法则:

  1.同号两数相加,取相同的'符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  五、回归实践,再用新知

  作业:31页:课外作业选做

  针对学生素质的差异进行分层训练,既使学生掌握基本知识,又能够使学生获得基本技能!

有理数的加法说课稿5

  各位考官上午好,我是参加初中数学科目考试的七号考生。我今天说课的题目是《有理数的加法》,下面我将从说教材、说学情、说教法、说学法、说教学课程、说板书设计六个方面来进行阐述。

  《有理数的加法》是人教版七年级上册第一章第三节的内容。本节课主要介绍了有理数的加法的基本运算法则。这节知识是在有理数、数轴、相反数及绝对值等概念学习的基础上进行的,并且是之后学习有理数混合运算、科学记数法及开方的基础。因此,本节课起到承上启下,铺路建桥的作用,意义重大。

  教学三维目标中知识与技能目标:学会应用有理数的加法运算法则进行计算。过程与方法目标:巧设具体问题的情境,并结合数轴,学生通过思考、分析、联想的过程,加深对有理数的加法的理解,并将所学知识运用于生活中。情感态度与价值观目标:学生养成主动参与的意识,培养对数学的兴趣。

  通过以上对教材及教学目标的分析,本节课的教学重点是掌握有理数的加法的运算法则,并能够灵活运用。难点是培养在实际生活中运用有理数的加法解决问题的能力。

  掌握学生的基本情况,对于把握和处理教材有重要的作用。七年级的学生可以解决日常生活中常见的正数的简单计算问题,也对有理数概念有了基本的了解,但运算因其本身有些抽象,学生计算起来还是有些困难。同时这一阶段的学生思维活跃,抽象思维从经验型逐步向理论型成长,但仍需要感性经验的辅助。所以本节课程可以通过设计具体的实际情境来引导学生理解有理数的加法运算,在这个过程中,学生主动参与的意识能够得到充分发挥,并且可以提高他们对于较抽象问题的解决能力。

  基于以上分析,以及遵循新课改的.精神:要注重学生的主体性和主动性,我将在本节课的教学中采用以归纳总结法为主,以启发式教学法、讲练结合法、情境教学法为辅,充分调动学生的学习积极性。

  教师是学生学习的引导者和促进者,为了帮助学生更好地学,结合本课内容,我将学法确定为:学生以自主、探究、合作、交流的学习方法为主,这有利于学生自主意识的成长。

  教学过程可以分为五个环节,首先是创设情境,导入新课。一个良好精彩的导入,能够激发学生的学习兴趣和欲望,是一节课成功的开始。根据《有理数的加法》这节课的特点,我将采用图片方式进行导入。播放几组足球比赛的图片,规定进球数为正数,失球数为负数,它们的和为净胜球数,有一支球队现在的比赛情况是进球4个失球1个。提问同学,该队净胜球数的表达式是什么呢?设置这一环节激发了学生的好奇心,让他们兴味盎然地投入到之后的学习中去。

  接着进入课文新授,深入感知环节。

  第一步,在学生讨论导入提出的问题后我提问学生回答之前的问题,得到4+(—1)的答案,这就引出了有理数的加法的表达式,学生出于对这个表达式答案的好奇,能更(专注地)进入到下面的学习(依据)。

  第二步,因上面的式子中出现了负数,我会提问学生(方法),负数让他们联想到了之前的什么知识,引导学生们说出数轴,此时规定在数轴上向右运动记为正,向左运动记为负。随后假设左右运动的六种情况。问同学,这六种运动过程在数轴上怎么表示?用之前有理数的加法式子怎么表示?每种情况下最后的结束点分别离原点多远?让同学们分组讨论,随后来回答。这步可以引出有理数的相同符号的加法,不同符号的加法,两个相反数的加法以及有理数与0的加法。这为后面学生理解加法法则奠定了基础。

  第三步,根据同学的回答将前面五个式子以及答案完整的写在黑板上,让同学们继续讨论从中根据数字前面的正负符号能发现什么规律。同学谈论交流,我进行引导和总结归纳得出有理数的加法的运算法则即:

  1、同号两数相加,取相同的符号,并把绝对值相加;

  2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3、一个数同0相加,仍得这个数。这一步通过例子有利于学生深入得理解有理数的加法法则,加深印象。

  为了让学生巩固新知,我会在新授结束后,根据教材分梯度选取习题,给学生进行课堂练习,在练习后我会进行及时讲解。有利于学生加深对新知识的印象,更好的完成本节课的重点。

  同学们掌握本节课的知识后,我将提问他们收获了什么,由同学自主总结本节课所学习的的内容,我给予补充评价。同时让同学自己谈谈所遇到的问题,进行同桌之间的讨论。有利于学生的自主思考,以及合作交流,并能通过反思来更好的巩固本节的知识。

  本节课的课后作业是学生回家思考现实生活中可以用有理数的加法来解决的问题,编写成题目并解答。这样有利于解决这节课的难点。

  我的板书设计采用的方法是线索式(方法),遵循简洁、明了、大方的原则,能很好的为突出教学重点服务。

  以上就是我的说课内容,谢谢各位评委老师。

有理数的加法说课稿6

  一、教材分析

  1.地位和作用

  本节课是在学生学习有理数加法法则的基础上,经历探索有理数加法运算律的探索过程,理解和把握有理数加法运算法则,并能运用加法运算律简化计算,为后面学习有理数减法做好铺垫。

  2.学情分析

  学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨。

  3.教学目标

  知识与技能:

  1.进一步熟练掌握有理数加法的法则。

  2.掌握有理数加法的运算律,并能运用加法运算律简化运算。过程与方法:

  启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。

  情感、态度与价值观:

  1.培养学生的分类与归纳能力。

  2.强化学生的数形结合思想。

  3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。教学重点:加法运算律的灵活运用,解决实际问题。

  教学难点:能运用加法运算律简化运算,加法在实际中的应用。

  二、教学方法与教材处理

  1.教学方法:

  采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。.引导学生类比探究有理数加法运算律,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.

  2.学法引导

  学法突出自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中总结有理数的运算律.在活动中注重引导学生体会用类比和数形结合的方法扩展知识的过程,培养学生学习的'主动性和积极性.

  3.设计理念

  教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。

  本节课的教学,是在学生已有的加法知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动。

  三、教学过程根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计环节:

  ◆前提诊测,复习提问:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判定”,所诊测的有理数的加法法则与新的内容有关。

  ◆提出问题,创设情景:在有理数的运算中,加法的交换律,加法的结合律还成立吗?从而提出研究有理数加法运算律的问题。

  ◆尝试指导,实施目标:从实例出发,让学生体会运用加法运算律可以简化运算.多个有理数相加,往往既是运用交换律,又运用结合律.

  ◆变式练习,巩固目标:为了更好地理解、把握有理数加法法则,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了4个由浅入深的练习题。

  ◆归纳总结,纳入知识系统:由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题.

有理数的加法说课稿7

  一. 教材的地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的.第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。二.教学目标 1、认知目标:

  (1)理解有理数加法的意义;

  (2)理解并掌握有理数加法的法则; (3)应用有理数加法法则进行准确运算; 2、 能力目标:

  (1)培养学生准确运算的能力; (2)培养学生归纳总结知识的能力; 3、情感目标:

  (1)通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造。 (2)体会有理数加法的数形思想。

  三.教学重点、难点:

  整节课都是围绕着有理数加法法则进行的,因此根据《教学大纲》的要求,本节课的重点是:有理数加法法则的理解与运用。突破策略:?利用多媒体手段,借助于动画演示,化抽象为具体.?讲清楚探究有理数加法法则的方法和过程。由于学生第一次接触带有符号的两个数

  相加,必须克服小学里长期形成的算术加法的思维定势的影响,特别是异号两数相加的符号和绝对值因此我确定本节课的难点是:异号两数相加加法法则的理解和应用。突破策略;?精选各种有趣的题型,让学生通过训练,尝试成功. ?利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。

  教学方法

  我在本节课主要采用“引导——发现教学法”,并借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当主角,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具多媒体 ,让学生在多媒体演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  在整个教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  学习方法

  七年级学生是智力发展的关键年龄,逻辑思维从经验型逐步向理论型发展。观察能力,记忆能力和想象能力也随着迅猛发展。他们生性好动,注意力易分散,爱发表见解,希望得到老师的表扬。所以在教学中我抓住学生的这一生理特点,一方面应用直观生动的形象幻灯图象,引发学生的兴趣,使他们的注意力始终集中在课堂上。另一方面通过小组竞赛和互举例子创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。

  采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。

  教学过程

  《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。

有理数的加法说课稿8

  各位考官上午好,我是参加初中数学科目考试的七号考生。我今天说课的题目是《有理数加法》,下面我将从说教材、说学情、说教法、说学法、说教学课程、说板书设计六个方面来进行阐述。

  《有理数加法》是人教版七年级上册第一章第三节的内容。本节课主要介绍了有理数加法的基本运算法则。这节知识是在有理数、数轴、相反数及绝对值等概念学习的基础上进行的,并且是之后学习有理数混合运算、科学记数法及开方的基础。因此,本节课起到承上启下,铺路建桥的作用,意义重大。

  教学三维目标中知识与技能目标:学会应用有理数的加法运算法则进行计算。过程与方法目标:巧设具体问题的情境,并结合数轴,学生通过思考、分析、联想的过程,加深对有理数加法的理解,并将所学知识运用于生活中。情感态度与价值观目标:学生养成主动参与的意识,培养对数学的兴趣。

  通过以上对教材及教学目标的分析,本节课的教学重点是掌握有理数加法的运算法则,并能够灵活运用。难点是培养在实际生活中运用有理数加法解决问题的能力。

  掌握学生的基本情况,对于把握和处理教材有重要的作用。七年级的学生可以解决日常生活中常见的正数的简单计算问题,也对有理数概念有了基本的了解,但运算因其本身有些抽象,学生计算起来还是有些困难。同时这一阶段的学生思维活跃,抽象思维从经验型逐步向理论型成长,但仍需要感性经验的.辅助。所以本节课程可以通过设计具体的实际情境来引导学生理解有理数的加法运算,在这个过程中,学生主动参与的意识能够得到充分发挥,并且可以提高他们对于较抽象问题的解决能力。

  基于以上分析,以及遵循新课改的精神:要注重学生的主体性和主动性,我将在本节课的教学中采用以归纳总结法为主,以启发式教学法、讲练结合法、情境教学法为辅,充分调动学生的学习积极性。

  教师是学生学习的引导者和促进者,为了帮助学生更好地学,结合本课内容,我将学法确定为:学生以自主、探究、合作、交流的学习方法为主,这有利于学生自主意识的成长。

  教学过程可以分为五个环节,首先是创设情境,导入新课。一个良好精彩的导入,能够激发学生的学习兴趣和欲望,是一节课成功的开始。根据《有理数加法》这节课的特点,我将采用图片方式进行导入。播放几组足球比赛的图片,规定进球数为正数,失球数为负数,它们的和为净胜球数,有一支球队现在的比赛情况是进球4个失球1个。提问同学,该队净胜球数的表达式是什么呢?设置这一环节激发了学生的好奇心,让他们兴味盎然地投入到之后的学习中去。

  接着进入课文新授,深入感知环节。

  第一步,在学生讨论导入提出的问题后我提问学生回答之前的问题,得到4+(-1)的答案,这就引出了有理数加法的表达式,学生出于对这个表达式答案的好奇,能更(专注地)进入到下面的学习(依据)。

  第二步,因上面的式子中出现了负数,我会提问学生(方法),负数让他们联想到了之前的什么知识,引导学生们说出数轴,此时规定在数轴上向右运动记为正,向左运动记为负。随后假设左右运动的六种情况。问同学,这六种运动过程在数轴上怎么表示?用之前有理数的加法式子怎么表示?每种情况下最后的结束点分别离原点多远?让同学们分组讨论,随后来回答。这步可以引出有理数的相同符号的加法,不同符号的加法,两个相反数的加法以及有理数与0的加法。这为后面学生理解加法法则奠定了基础。

  第三步,根据同学的回答将前面五个式子以及答案完整的写在黑板上,让同学们继续讨论从中根据数字前面的正负符号能发现什么规律。同学谈论交流,我进行引导和总结归纳得出有理数加法的运算法则即:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数。这一步通过例子有利于学生深入得理解有理数加法法则,加深印象。

  为了让学生巩固新知,我会在新授结束后,根据教材分梯度选取习题,给学生进行课堂练习,在练习后我会进行及时讲解。有利于学生加深对新知识的印象,更好的完成本节课的重点。

  同学们掌握本节课的知识后,我将提问他们收获了什么,由同学自主总结本节课所学习的的内容,我给予补充评价。同时让同学自己谈谈所遇到的问题,进行同桌之间的讨论。有利于学生的自主思考,以及合作交流,并能通过反思来更好的巩固本节的知识。

  本节课的课后作业是学生回家思考现实生活中可以用有理数加法来解决的问题,编写成题目并解答。这样有利于解决这节课的难点。

  我的板书设计采用的方法是线索式(方法),遵循简洁、明了、大方的原则,能很好的为突出教学重点服务。

  以上就是我的说课内容,谢谢各位评委老师。

有理数的加法说课稿9

  一、说教材:

  (一)地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  (二)课程目标:

  1、知识与技能目标:

  ⑴了解有理数加法的意义。

  ⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。

  (3)运用有理数加法法则正确进行运算(主要是整数的运算)。

  2、过程与方法目标:

  ⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

  (2)在探索过程中感受数形结合和分类讨论的数学思想。

  (3)渗透由特殊到一般的唯物辩证法思想

  3、情感态度与价值观目标:

  (1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

  (2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

  (3)培养学生合作意识,体验成功,树立学习自信心。

  (三)教学重点、难点:

  重点:理解和运用有理数的加法法则

  难点:理解有理数加法法则,尤其是理解异号两数相加的法则

  二、说教法:

  在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。

  新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);

  行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的'符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);

  省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。

  信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。

  同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。

  另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。

  三、说学法:

  本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:

  第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的学习为本节课提供了学习的前提;

  第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;

  第三、范例讲解和随堂练习始终是学以致用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。

  四、说教学程序:

  本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)

  1、 引入新知---新(创设新的问题情境)。

  今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。

  2、 探究新知---行

  (1) 类比小学学习加法的“实物数数法”(1用一个 表示,-1用一个 表示,那么2就用两个 表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。

  (2) 联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。

  3、 得出新知---省

  在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:

  (-2)+(-3)=-5

  (+3)+(-2)=+1

  (+2)+(+3)=+5

  (-3)+(+2)=-1

  (-4)+(+4)=0

  问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?

  在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。

  4、 运用新知---信

  此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,

  5、 联系实际、小小拓展;

  为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?

  6、 教学小结、知识回顾:

  教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:①确定类型、②确定符号、③确定绝对值。

  7、课外作业

  为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请聪明的你举例说明。

有理数的加法说课稿10

  教学目的

  1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.

  2.通过有理数的加法运算,培养学生的运算能力.

  教学重点与难点

  重点:熟练应用有理数的加法法则进行加法运算.

  难点:有理数的加法法则的理解.

  教学过程

  (一)复习提问

  1.有理数是怎么分类的?

  2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

  3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

  -3与-2;3与-3;-3与0;

  -2与+1;-+4与-3.

  (二)引入新课

  在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.

  (三)进行新课 有理数的加法(板书课题)

  例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

  两次行走后距原点0为8米,应该用加法.

  为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

  1.同号两数相加

  (1)某人向东走5米,再向东走3米,两次一共走了多少米?

  这是求两次行走的路程的和.

  5+3=8

  用数轴表示如图 :略

  从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

  可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

  (2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

  显然,两次一共向西走了8米

  (-5)+(-3)=-8

  用数轴表示如图 :略

  从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

  可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

  总之,同号两数相加,取相同的.符号,并把绝对值相加.

  例如,(-4)+(-5),同号两数相加

  (-4)+(-5)=-( ),取相同的符号

  4+5=9把绝对值相加

  (-4)+(-5)=-9.

  口答练习:

  (1)举例说明算式7+9的实际意义?

  (2)(-20)+(-13)=?

  2.异号两数相加

  (1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

  5+(-5)=0

  可知,互为相反数的两个数相加,和为零.

  (2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

  就是 5+(-3)=2.

  (3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

  就是 3+(-5)=-2.

  请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

  最后归纳

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0

  例如(-8)+5绝对值不相等的异号两数相加

  85

  (-8)+5=-( )取绝对值较大的加数符号

  8-5=3 用较大的绝对值减去较小的绝对值

  (-8)+5=-3.

  口答练习

  用算式表示:温度由-4℃上升7℃,达到什么温度.

  (-4)+7=3(℃)

  3.一个数和零相加

  (1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

  显然,5+0=5.结果向东走了5米.

  (2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

  容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

  请同学们把(1)、(2)画出图来

  由(1),(2)得出:一个数同0相加,仍得这个数.

  总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

  有理数加法运算的三种情况:

  特例:两个互为相反数相加;

  (3)一个数和零相加.

  每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

  (四)例题分析

  例1 计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  例2

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调两个较大一个较小)

  解: 解题时,先确定和的符号,后计算和的绝对值.

  (五)巩固练习

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

有理数的加法说课稿11

各位评委、老师:

  大家好!今天我授课的课题是“有理数的加法(二)"。下面我就从以下三个方面——教材分析与教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

  一、教材分析与处理

  有理数的加法运算律在整个知识系统中的地位和作用是很重要的。初中阶段主要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。

  根据教学大纲的要求,来确定本节课的教学目标。教学总目标为通过本节课的'学习,学生能运用加法运算律简化加法运算,并能够理解加法运算律在加法运算中的作用。具体从以下三方面而言:一、 知识技能:让学生熟练掌握三个或三个以上有理数相加的运算,并能灵活运用加法的交换律和结合律使运算简便;培养学生的类比能力。二、过程方法: 培养学生的观察能力和思维能力,经历对有理数的运算,领悟解决问题应选择适当的方法。三、情感态度:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。教学重点:有理数的加法运算律的理解与掌握。教学难点:灵活运用加法运算律使运算简便。

  二、教学方法和数学手段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是先让同学们运用已学过的知识进行有理数的加法运算,并引导学生进行自主探究,发现有理数的运算律,并进行总结。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  三、教学过程的设计

  1、回顾:回顾上节课的内容—有理数的加法法则。让同学回忆之前的内容,渐渐进入学习状态。

  2、引入:在引入上,让同学们运用加法法则进行计算 ,并提出问题,引导学生进行观察和思考。让学生自已动脑思考问题,使同学在解决问题的同时产生一种成就感,从而更加积极主动的学习,并且营造了良好的学习氛围。

  3、授课:法则的得出重在体现知识的发生,发展,形成过程。通过同学的观察和思考,并在老师的指导下总结出有理数的运算律:加法交换律和加法结合律在有理数范围内适用。并准备一些相应的例题,主要采取讲练结合的方式,边做边总结。

  4、课堂小结:归纳总结由学生完成,老师做适当的补充和引导。最后教师对本节课进行最后的说明和归纳。

  5、随堂练习:在习题的配备上,我特别注意针对性,所以习题的配备虽简却精。主要让学生在练习的过程中能够对本堂课的内容理解进一步加深,同时注重调动学生的积极性,使学生在一种比较活跃的氛围中学习,并解决问题。

  6、作业设计:作业的设计旨在学生对本节课的知识进行复习和巩固,主要起到延续课堂的作用,让同学们对知识的掌握更加牢固。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

有理数的加法说课稿12

尊敬的各位评委老师:

  大家好!

  我是来自洋后学校的数学教师王金今天我说课的题目是有理数加法运算律,这节课选自人教版七年级上册第一章第三节的内容。根据新课改新理念,围绕努力实现“用好教材”,而不是传统教学中的“教教材”,我将从以下五个环节逐一进行阐述我对于本节课的教学设计:

  一、教学背景分析

  1、教材的地位和作用

  本节教材是初中数学七年级上册的内容,是初中数学的重要内容之一。一方面,这是在学习了有理数加法的基础上,对有理数加法运算的进一步深入和拓展;另一方面,又为学习有理

  数混合运算等知识奠定了基础。因此本节课在教材具有承上启下的作用。

  2、学情分析

  学生在此之前已经学习了加法以及正有理数的加法运算律,对有理数加法运算已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于引入负数之后加法运算律的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:了解加法交换律,结合律的内容,运用运算律进行简化加法运算,运用有理数加法解决问题。

  难点确定为:运用有理数加法解决问题

  二、教学目标分析

  根据新课标的.教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1。知识与技能目标:

  (1)正确理解加法交换律,结合律,能用字母表示运算律的内容;

  (2)能运用运算律较熟练的进行加法运算。

  2。过程与方法目标:

  (1)体验加法交换律、结合律在实际运算中的应用;

  (2)能运用有理数的加法解决问题。

  3。情感态度与价值目标:通过思考、观察、比较等体验数学的创新思维和发散思维,激发学生的学习兴趣。

  三、教学方法分析

  数学是一门培养和发展人的思维的重要学科。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我设计了以下四种教法:

  〖情境法〗创设情境来激发学生的学习兴趣,体会本节课的重要性;

  〖探究法〗引导学生探究在求解两个加数的和以及调换加数位置后的值有什么变化,接着继续探究结合律的规律;

  〖演示法〗演示具体的简化运算过程;

  〖讨论法〗通过探究、演示、讨论得出并领会a+b=b+a,(a+b)+c=a+(b+c)所表示的含义

有理数的加法说课稿13

  各位领导、老师,大家好!

  今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。

  本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。

  一、教材结构与内容简析

  在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。

  2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

  3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:

  (1)渗透由特殊到一般的辩证唯物主义思想

  (2)培养学生严谨的思维品质。

  二、教学目标

  根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:

  1、基础知识目标:

  (1)理解有理数加法的意义;

  (2)理解并掌握有理数加法的法则;

  (3)应用有理数加法法则进行准确运算;

  (4)渗透数形结合的思想。

  2、能力目标是:

  (1)培养学生准确运算的能力;

  (2)培养学生归纳总结知识的能力;

  3、德育目标是:渗透由特殊到一般的辩证唯物主义思想

  4、个性品质目标:培养学生严谨的思维品质。

  三、教学重点、难点、关键

  有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。

  四、教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的.点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。

  五、学法

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  六、教学过程的设计

  1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。

  2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。

  3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

  4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

有理数的加法说课稿14

  尊敬的各位评委、各位老师,我是来自洪洞县有理数的加法大槐树一中的数学教师,我叫xxx,今天的说课题目是【有理数的加法法则】第一节。

  我们知道有理数是整个代数的基础,而有理数的加法运算又是初中数学的基本运算,因此可以说有理数这一章,是整个初等数学的奠基石,它所隐含的丰富的内容反映了中学阶段许多重要的数学思想方法。

  下面我将从4个方面来阐述我对这节课的理解和设想:

  教材分析;教法分析;学法指导;教学过程

  一、教材分析:

  在教材分析中我将谈一下几点:

  (一)、教材的地位与作用:

  【有理数的加法法则】是初中华师版七年级上册第二章第六节的内容,在这之前,学生已经在小学掌握了算术运算,而前边的学习又初步掌握了有理数的基本概念,有理数的加法运算是建立在小学运算的基础之上的,又与小学加法运算有很大的区别,如小学的加法运算不需要确定符号运算单一,而有理数的加法不但要计算绝对值的大小而且还要确定结果的符号,由算术到代数式学生从小学到初中的一个新的转折点。而有理数的加法又是有理数运算的主要内容是初等数学运算的基础,同时又是学习物理、化学等相关学科的基础。因此,这部分内容在学习数学及其他方面占有相当重要的地位及作用。

  (二)、教学内容:

  有理数的加法的教学共分2课时,这是有理数的加法第一课时。本节课主要讲授有理数加法的意义,归纳有理数加法的法则,能区别有理数的和与小学运算的和的'不同,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。

  (三)、教学目标:

  倡导有理数的加法要以学生为主,让学生参与"观察、猜想、验证、归纳、运用"的全过程。以培养创新意识与培养能力为宗旨。从教材的特点和初一学生的认知水平,以教学思维为出发点。我设计如下的教学目标:

  1、知识目标:使学生有理数加法的意义,掌握有理数加法的法则,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。

  2、能力目标:在本节课的教学中,借助数轴向学生渗透数形结合的思想,利用绝对值把有理数的加法运算化归为小学算术的加减运算,体现化归的思想,以及适度加强法则的形成过程,着重培养学生"观察、猜想、验证、归纳、运用"等综合能力。

  3、情感目标:遵循学生学习的认知规律和初一学生的身心特点,按照启发式教学原则用发现法和直观教学法激发学生探究教学的兴趣,培养学生敢于探索、乐于创新的精神。

  4、教学重点、难点和教学关键:

  本节课的教学重点是:有理数加法的法则

  难点是:异号两数相加的法则,不仅要确定喝的符号而且表明上的和是化归为算术减法来解决的,学生不好掌握,因此我确定本节课的难点是异号两数相加的法则;

  解决问题的关键是有理数加法中结果符号的确定。

  二、教法分析:

  为了充分调动学生的积极性,变被动学习为主动学习使教学生动、有趣、高效,我采用启发式教学,发现法教学形成性学习和多媒体教学手段共用,考虑到学生目前仍以直观思维为主,在教学中,我采用针对性较强的相应措施。首先,我创设具体的问题情景运用多媒体手段进行必要的动态演示,让学生看的清楚,听的明白逐步从图形的直观向深化过渡,最后向抽象思维过渡,引导学生观察与思考,以增强教学的直观性、有效性;其次,引导学生从特殊到一般的探究,师生共同归纳出有理数的加法法则,以以增强教学的直观性、有效性、深刻性这既是形象思维转化为抽象思维的过程,也是对学生观察、归纳思维能力的过程,再让学生参与知识的形成过程,促进认知结构的建构,培养学生活动知识的能力,从而使学生在学习知识的过程中,获得成功的体验。

  三、学法指导:

  课堂教学要体现以学生的发展为本,为充分体现教师为主导、学生为主体的教学原则,我采用启发式教学原则,通过提出问题,多媒体的直观演示和学生一起分析,归纳出法则。始终让学生参与整个问题的全过程,在整个教学过程的设计中力求发挥学生的主体意识,尽情创造性的学习,无论在法则的形成,还是法则的运用数学思想方法的渗透,都避免教师的灌输方法,有意识的让学生主动观察、比较、分类、归纳积极思考,教师在教学中加以引导、及时点拨,激发学生的探索精神和求知欲望,培养学生的学习数学的主动性,让学生在愉悦的气氛中感受到数学学习的无限乐趣。

  四、说教学过程:

  1、首先我通过简明扼要的语言引导学生回顾小学数学运算的过程,类比联想到在学习有理数后,必然要学习有理数的加法。接着我提出问题,然后教师启发、引导学生。这些问题是求物体两次向同一方向运动的喝的问题,如何求解呢?联系小学学习过的加法意义,学生很快就能打出用加法。这样引出课题

  2、然后设置这样一个问题情景,利用动态演示带领学生进行新课探索,首先我提出问题"两次一共向东走了多少米?"用什么方法呢?接着我提醒学生注意审题,暗示学生题中没有明确小明朝那个方向走,通过暗示,引导学生思考。在这里,为了区别"向东"还是"向西"走,"我们规定向东走为+,向西走为—"南无小明共有几种走法?在教师提出问题之后,学生分组讨论,最后引导学生得出有"同向""异向"两种情况,【我在这个问题中,没有明确提出小明的走向,其目的是让学生积极思考】接着动态演示图像情况,在演示之前,我提醒学生注意观察演示过程。 "小明向东走了20米,第二次又向东走了30米,那么两次一共向东走了多少米?"接着看图形的第二种情况"小明向东走了—20米,也就是向西走了20米,第二次又向东走了—30米,也就是向西走了30米。那么两次一共向东走了多少米?"通过演示,很容易得出两次一共走了—50米。得出算式,之后,去我引导学生对算式进行分析,从中发现规律得出同号的加法法则。在总结出同号的加法法则后,我又引导学生讨论逆向的情况,在这里仍然提醒学生注意下面的演示过程。"小明向东走了20米,第二次又向东走了—30米,那么两次一共向东走了多少米?"学生讨论得出—10米,通过演示,接着让学生思考第二种逆向情况:"小明向东走了—20米,第二次又向东走了30米,那么两次一共向东走了多少米?"学生分组讨论可以得出走了10米。得出算式"(—20)+(+30)=+10"通过两次演示逆向运动,学生仔细观察,引导学生动口、动脑及思考后,得出两次运动的和,师生归纳出异号下的加法法则。结论:"绝对值不相等的异号两数相加,取绝对值较大的加数的符号经用较大的绝对值减去较小的绝对值"、在这里,我通过简明的动态演示,是学生的注意力集中到问题本身,同时问题的演示,更容易突破难点。

  3、接着我又提出问题2"在东西走向的马路上小明从O点出发,向东走了20米,又向西走了—20米,那么两次一共走了多少米?"利用动态演示,学生很容易得出"互为相反数的两数相加得0"之后我又提出问题3"在东西走向的马路上小明从O点出发,向东走了20米,又向西走了0米,那么两次一共走了多少米?"学生很容易得出"一个数与0相加,仍得0"从而利用上面的演示过程,归纳出有一个加数为0的法则。

  4、至此,通过师生多种情形的归纳,一起归纳出有理数的加法法则

  【1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号经用较大的绝对值减去较小的绝对值;3、互为相反数的两数相加得0 4、一个数与0相加,仍得0】

  意义上教学过程通过多媒体演示,把数、式、形的静变为动,以增强法则的直观性,加深法则的理解,突出本节课的重点、突破难点,同时也增强了数形结合的思想运用,在归纳出法则后,我有进一步启发引导学生分析法则的特点,并总结规律"两有理数相加,所得的和为符号和和两部分组成,加法运算的关键是福海的确定,符号运算一旦解决,余下的就是小学算术的加减问题了"在这里,我给出两个具体的实例通过对他们的分析得出:

  (—4)+(—8)= —(4+8)=—12

  同号两数相加取相同的符号通过绝对值化归为算术数和的过程

  (—9)+(+2)= —(9—2)=—7

  异号两数相加取绝对值较大符号通过绝对值化归为算术数减的过程

  总结:同号两数之和——名副其实的和——做加法

  异号两数之和——表面是"和"实际上是做减法。

  运算步骤:

  1、先判断类型:同号还是异号;

  2、确定和的符号;

  3、后进行绝对值的加减运算

  简单归为:8字诀——符号法则+算式加减

  通过以上的设计,进一步加深了对法则中难点问题的理解之后教师引导学生归纳出运算步骤,然后又教师归纳出加法法则。

  4、这时我又提出另一个问题"两个正数相加,和一定大于每个加数吗?那么在有理数的范围内,又有怎样的情形呢?"通过设问,引导学生思考,教师引导学生通过有理数的和与小学学习的算术的和区别,由师生共同得出结论

  【设置这个问题的目的在于使学生感受类比的数学思想是他们善于比较知识的联系与区别,提高联想记忆强度】

  5、接下来我又设置了一道改错题:

  【设置问题,强化关键:判断正误,并改错1、两个负数相加,绝对值相加;2、正数加负数,何谓负数;3、负数加正数,和为正数;4、两个有理数和为负数时,着两个有理数都是负数】

  它是专为学生在运用法则时易出错的问题而设计的为促使学生在引用时仔细审题,通过分析辩误,抓住关键。

  6、为了完成从掌握知识到引用知识的转化,使知识教学与智能训练相结合,我设置了以下例、习题易培养他们的逻辑思维和严密的计算能力,下面的这组练习由浅入深、循序渐进的原则,其目的在于巩固法则,加深对法则的理解和记忆,练习2通过强化与训练,使学生熟中生巧、将知识转化为技能,也为以后的学习奠定基础。

  计算下列各题:

  例题1、(—6)+(—8)2、5、2+(—4、5)

  练习:1、计算下列各题:并说明理由(1)、(—4)+(—7)

  (2)、(—4)+(+7)(3)、(+4)+(+7)

  (4)、(—4)+(+4)(5)、(—9)+0

  练习:2、计算下列各题:

  (1)、15+(—22)(2)、(+0、9)+1、5(3)、(+2、7)+(—3、5)

  7、到这时,整个教学过程也接近尾声了,为了是学生对所学知识有一个完整的框架,利于学生对知识的理解和记忆,师生共同合作,从以下三方面进行小结:1、本节课学习的主要内容;2、运用有理数加法法则的关键问题;3、本节课所涉及的数学思想方法【这样小结,其目的是梳理了知识,有点明了本节课的学习要点,同时使学生对本节知识体系有一个完整的认识,为下节课的学习打下良好的基础】

  8、作业布置:(必做)练习2、3、4、(选作)习题1、2

  【作业布置是为了发现弥补学生知识掌握的不足强化技能训练;另外作业的布置体现了分层教学,满足了不同学生的不同要求,达到了分层优化的目的,从而培养了学生良好的学习习惯和品质】

  9、最后是我的板书设计:

  课题:有理数的加法法则

  法则小结

  步骤与口诀布置作业

  结论

  以上是我从四个方面阐述了本节课"教什么,怎么教,有理数的加法为什么这样教"希望各位专家、老师对本节课提出宝贵意见,再次谢谢各位评委老师。

有理数的加法说课稿15

  作为一名默默奉献的教育工作者,就不得不需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。如何把说课稿做到重点突出呢?下面是小编为大家整理的有理数的加法法则说课稿范文,仅供参考,欢迎大家阅读。

  《有理数的加法法则》选是九年义务教育华师大版上学期第2章第6节的内容,本节内容安排两个课时,本课时是本节内容的第一课时。

  有理数的加法运算是建立在算术加法运算和有理数意义的基础上展开的,学好有理数的加法运算是学习其他有理数运算,以及后继要学到的实数、代数式、方程、不等式、函数等知识的前提。有理数的加法运算是建构在生产、生活实例上,展现了数学来源于实践,又应用于实践的过程。

  本节课的教学目标为:

  认知目标:

  1、理解有理数加法的意义

  2、理解并掌握有理数加法法则

  3、应用有理数加法法则进行准确运算。

  能力目标:

  1、让学生体会数形结合思想、转化思想与分类思想

  2、培养学生准确运算能力和归纳总结知识的能力。

  情感目标:

  通过丰富的数学活动培养学生对数学的热爱和树立学习的自信心。

  本节课的重点:有理数加法法则的理解和应用。

  突破策略:

  1.利用多媒体手段,借助于动画演示,化抽象为具体。

  2.讲清楚探究有理数加法法则的方法和过程。

  由于七年级的学生是第一次接触到带有符号的两个数相加,必须克服小学里长期形成的算术加法运算的思维定势,而解决异号两数相加时有关符号和绝对值的问题有一定难度,因此,本节课的难点是对异号两数相加加法法则的理解和应用。

  突破策略:

  1.精选各种有趣体型,让学生通过训练,尝试成功。

  2.利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。

  根据弗赖登塔尔的数学教育理论:“数学起源于现实,数学教育的过程是学习‘数学化’的过程,而学生学习数学是一个‘再创造’的过程。”所以本节课我主要采用“引导——发现法”并借助于计算机课件,通过“问题情境——建立模型——解释、应用与拓展”的模式展开教学。

  七年级的学生是智力发展的关键年龄,他们活泼好动,注意力易分散,爱发表见解,并希望得到老师的表扬。所以我抓住学生的`这一生理特点,努力创造条件和机会,让学生发表见解,发挥学习的主动性;并适当运用多媒体演示,吸引学生的兴趣,使学生的注意力始终集中在课堂上。

  《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设计如下:

  第一个环节:发现新知,在这个环节里我设置了两个活动。

  活动一,根据“兴趣是学生最好的老师”我选用学生感兴趣的足球比赛引入课题。让学生通过对得分的观察,体会到如果加法运算仅局限在小学当中的算术加法运算是不够的,从而顺理成章的引入今天的课题:有理数的加法。

  活动二:探索交流。美国学者奥苏伯尔称:必要的经验和预备知识,为先行组织者,而学生已经在2、1至2、5中学了有理数的意义,这些都为学生探索法则架起了桥梁作用的组织者,在此基础上,我设置了六个探究活动。即以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为负,向右为正。这样借助数轴帮助学生理解。既渗透了分类思想又渗透了数形结合思想,最后再由学生对整个规律进行总结归纳补充,从而得出了有理数加法法则。

  法则得出后,我设置了一个小活动,比比谁聪明,让学生观察法则中1、2用简短的两句话进行概括,教师在充分肯定学生的回答后给出:同号不变值相加,异号取大值相减。在此基础上再让学生更加深入地熟悉法则,教师继续强调符号与绝对值。

  第二个环节:再探新知。学生对法则有了初步的了解,加深学生对法则的理解,整个法则中尤其强调的是符号与绝对值,为能让学生更加直观地认识到这一点,我让他们解决创设情景中的动漫表格的问题,以个别提问的方式让学生通过表格的填写,体会到整个和的组成就是由符号与绝对值两部分,从而体现了本节课的重点与难点,加深了学生对法则的理解。

  第三个环节:应用新知,首先我设置了一道例题,由于课前有让学生预习,所以例题是由学生自主完成,作完后由基础较薄弱的学生进行板演,对于板演时出现错误的题目,可由学生自行更正,最后师生共同评述。例题以这样的形式完成,可以使得全体学生尤其是学有困难的学生都能达到基本的学习目标,获得成功的喜悦。紧接着,我设计了练习。课前我按照学习程度均衡的原则,将本班分成A、B、C、D四个小组。我设置了一道抢答题,由组间进行抢答,对于抢答成功的小组给予福娃奖励,最后以福娃个数多的小组获胜,以此激发学生学习的兴趣。

  根据七年级学生的年龄特征,为能更大限度地吸引学生的兴趣,我还设置了这样一个活动:男生出题,女生回答;女生出题,男生回答。将整节课推向了高潮。在学生兴趣正浓时,我设置了一个小游戏,玩有理数牌,请同桌间的两个同学,各自抽取一张牌,进行求和比赛,看谁算得又快又准。教师在学生之间巡回参与活动。这样设计符合学生年龄特征的游戏,体现了新课改理论,让学生在“学在玩”在“玩中学”。

  设置练习时,除了在形式上做了充分的考虑之外,我还注意到学生的思维是一个循序渐进的过程。所以除了刚才所设置的基础训练之外,我还设置了变式练习。第一题以填空的形式出现,如果题目是,那么大部分学生马上可以得到,所以以这样的形式出现就对学生的解题造成了困难。通过对这道题目的解答,可加深学生对法则的理解,并为紧接着要学的有理数减法作好铺垫,同时也培养了学生发散思维的能力。第2题与之前的探究活动相呼应,须分四种情况进行讨论。从而培养了学生的分类思想。为体现数学来源于生活,又服务于生活。我设置了这样一道应用题。通过此题,激发学生学习数学的热情。

  此节课的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习。

  这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。

  总之,整个教学旨在,通过创设问题情境,引导学生进行分类、观察、分析,进而归纳从具体到一般的规律,得出有理数加法法则,在学生的学习过程中,充分让学生感受、体会知识的产生和发展过程,注重促使学生积极思维,主动探索,用于发现。