高一下册数学教学计划

时间:2024-08-08 教学计划 我要投稿

高一下册数学教学计划

  时间就如同白驹过隙般的流逝,又将迎来新的工作,新的挑战,该为自己下阶段的学习制定一个计划了。好的计划都具备一些什么特点呢?下面是小编整理的高一下册数学教学计划,欢迎大家分享。

高一下册数学教学计划

高一下册数学教学计划1

  为了使本学期的教学工作呈现出规范化、特色化、现代化的良好局面,进一步提高教学质量。面对新教材,将钻好教材,研好教材、教法,适应教材、学生,不断改变教学策略,使教学质量稳中有进,特计划如下:

  一、理论学习:

  抓好教育理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课教学思想,树立现代化、科学化的教育思想。

  二、做好各时期的计划:

  为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元、各课题的进度情况进行详细计划。

  三、备课:

  备课时一定要做到教材在我心中学生在我心中教学目标和思路在我心中教学方法在我心中,既要遵循规律,又要张扬个性;既要坚持唯物论,又要不忘辨证法;既要全面考虑,又要突出重点;既要依托教材,又要突破教材,深挖教学资源;既要充分考虑教学中会出现的各种情况,会遇到的各种困难,又要大胆尝试,勇于创新。并且,要勤于走出书斋,走到学生中去,了解情况,沟通思想,一起协商备课。

  四、课堂教学:

  在教学中要充分运用课改理念来指导我们的教学,要真正成为学生学习的参与者、指导者与组织者,为学生提供更多的`自主、实践的时间和空间。要注重教学的层次性,在课堂上不能只为了中下生而反复做一些简单的基本题目,要注意为好学生提供有一定思维含量的题目,要注意让不同层次的学生都能得到发展。要充分利用周围的教学资源,特别是我校的多媒体教学资源,多搜集制作课件,多使用课件,真正让数学生活化、趣味化。要做好课堂的组织教学,培养学生良好的学习习惯。为了能保证课堂教学的质量,在课前多思考:考虑自己的教学设计,考虑学生的实际情况。对于难度较大的知识,要提前熟悉相关的知识,分散难点;对于差生,可提前辅导,以减少由于课堂上听不懂而产生的厌学情绪。继续提倡课堂上的四性,即:愉悦性、扎实性、全员性、主动性。

  五、辅导和作业批改

  要时刻关注学生的表现和学习情况,对于不同层次的学生要采取不同的辅导手段,如对于中等的学生,要随时抓住他学习中出现的问题及时辅导;对于差生要注重他们最基础知识的理解与掌握,不急噪,不拿和别的学生一样的标准来衡量,对他们课堂上要时刻关注,课后辅导要及时,要面对面进行辅导。

高一下册数学教学计划2

  教材教法分析

  本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课.该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化.教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2-1内容《空间中的向量与立体几何》有着铺垫作用.由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系.

  学情分析

  一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力.另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想.这两方面都为学习本课内容打下了基础.

  教学目标

  1.知识与技能

  ①通过具体情境,使学生感受建立空间直角坐标系的必要性

  ②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程

  ③感受类比思想在探究新知识过程中的作用

  2.过程与方法

  ①结合具体问题引入,诱导学生探究

  ②类比学习,循序渐进

  3.情感态度与价值观

  通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.

  教学重点

  本课是本节第一节课,关键是空间直角坐标系的.建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为空间直角坐标系的理解.

  教学难点

  通过建立恰当的空间直角坐标系,确定空间点的坐标。

  先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出第三根轴的建立,进而感受逐步发展得到空间直角坐标系的建立,再逐步掌握利用坐标表示空间任意点的位置.总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论.

高一下册数学教学计划3

  一、教学分析

  1、分析教材

  本章教材整体主要分成三大部分:

  (1)、圆的标准方程与一般方程;

  (2)、直线与圆、圆与圆的位置关系;

  (3)、空间直角坐标系以及空间两点间的距离公式。

  圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。

  2、分析学生

  高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想

  3、教学重点与难点

  重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。

  难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。

  二、教学目标

  1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。

  2、掌握直线与圆的位置关系的判定。

  3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。

  4、培养学生科学探索精神、审美观和理论联系实际思想。

  三、教学策略

  1、教学模式

  本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的

  教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。

  2、教学方法与手段--充分利用信息技术,合理整合课程资源

  采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。

  四、对内容安排的说明

  本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。

  1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的'曲线方程。

  通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。

  2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:

  (1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。

  (2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。

  3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。

  用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:把代数运算结果翻译成几何结论。

  五、教学评价

  ㈠过程性评价

  1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。

  2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈

  ㈡终结性评价

  1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。

  2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。

高一下册数学教学计划4

  一、学生情况分析

  五年级2班学生现有58人,总的来说学生基础不是很好,优差学生差距很大,优生占的比重小。造成这些问题的原因主要是学生还没有形成良好的学习习惯,上课听讲不够认真;作业也不能按时完成,缺乏上进心。

  二、本学期教学内容及目标要求

  教学内容:

  这一册教材包括下面一些内容:小数的乘法和除法,整数、小数四则混合运算和应用题,多边形面积的计算,简易方程。

  目标要求:

  1、使学生在理解小数的意义和性质的基础上,比较熟练地进行小数乘法和除法的笔算和简单的口算。

  2、使学生认识中括号,能够正确地进行整、小数四则混合运算(不超过四步)。

  3、使学生掌握解应用题的一般步骤,会分析、会列综合算式解答三步计算的应用题,以及相遇的行程问题,能够初步运用所学的知识解决生活中一些简单的实际问题。

  4、使学生学会用字母表示数,表示常用的数量关系,初步理解方程的含义,会解简易方程。

  5、使学生掌握平行四边形、三角形和梯形面积的计算公式,会计算它们的面积。

  6、使学生在掌握用算术方法解应用题的基础上,初步学会列方程解两、三步计算的应用题,初步能够根据应用题的具体情况灵活地选用算术解法和方程解法。

  7、通过实践活动,使学生体验数学与日常生活的密切联系,培养学生的数学应用意识和动手操作能力。

  8、结合有关内容,进一步培养学生检验的习惯,进行爱祖国、爱社会主义的教育和唯物辩证观点的启蒙教育。

  三、完成教学任务的主要措施

  1、积极参加教研组组织的集体备课教研活动,对下发的教案要及时提出改进意见,在写好教后记的'同时,做好改正工作,以便为今后教学工作打下扎实的基础。

  2、上课要认真负责,面向全体学生进行教学,重点辅导好后进生,多提问,少批评,多表扬,树立他们战胜困难的信心,使他们尽快赶上来。

  3、作业批改要及时认真,把结果反馈到学生切实体现出检查指导的作用。定时开展优秀作业展评活动,形成一个认真写字,细心检查的良好学习风气。

  4、根据实际情况及时调整自己的教学方法,杜绝生搬硬套和“填鸭式”,“满堂灌”的教学模式,注重启发式的目标教学的运用,尽量让学生做到乐于学习,乐于参与。

高一下册数学教学计划5

  一、教材依据

  本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。

  二、教材分析

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式

  、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的.问题求直线方程问题。在引入,过程中要让学生弄清

  直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

  在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

  三、教学目标

  知识与技能:

  (1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系。

  过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生

  通过对比理解截距与距离的区别。

  情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化

  等观点,使学生能用联系的观点看问题。

  四、教学重点

  重点:直线的点斜式方程和斜截式方程。

  五、教学难点

  难点:直线的点斜式方程和斜截式方程的应用。

  要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

  六、教学准备

  1.教学方法的选择:启发、引导、讨论.

  创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性

  学习活动。

  2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题

  间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

  ②.分组讨论。

高一下册数学教学计划6

  一、内容及其解析

  1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。

  2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。

  二、目标及其解析

  1。目标

  掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。

  2。解析

  ①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。

  ②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。

  ③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。

  ④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。

  ⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。

  三、教学问题诊断分析

  1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。

  2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。

  3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。

  四、教法与学法分析

  1、教法分析

  新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。

  2、学法分析

  改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。

  通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。

  五、教学过程设计

  问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?

  [设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。

  问题2:建立直线方程的实质是什么?

  [设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的'坐标满足的条件用方程表示出来。

  引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?

  [设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。

  问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?

  (过与两点的直线的斜率为)

  [设计意图]让学生寻找确定直线的条件,体会动中找静。

  问题2。2如何将上述条件用代数形式表示出来?

  [设计意图]让学生理解和体会用坐标表示确定直线的条件。

  用代数式表示出来就是,即。

  问题2。3为什么说是满足条件的直线方程?

  [设计意图]让学生初步感受直线与直线方程的关系。

  此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。

  另外以方程的解为坐标的点也在直线上。

  所以我们得到经过点,斜率为的直线方程是。

  问题2。4:能否说方程是经过,斜率为的直线方程?

  [设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。

  问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?

  [设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。

  问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?

  [设计意图]引导学生掌握解析几何取点的方法。

  引导学生求出直线的点斜式方程

  注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。

  问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?

  [设计意图]让学生初步感受解析几何求曲线方程的步骤。

  ①设点———用表示曲线上任一点的坐标;

  ②寻找条件————写出适合条件;

  ③列出方程————用坐标表示条件,列出方程

  ④化简———化方程为最简形式;

  ⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。

  例1分别求经过点,且满足下列条件的直线的方程,并画出直线。

  ⑴倾斜角

  ⑵斜率

  ⑶与轴平行;

  ⑷与轴平行。

  [设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。

  注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。

  ⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。

  ⑶当直线的倾斜角时,直线的斜率,直线方程是。

  ⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。

  练习:1。。

  2。已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。

  [设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。

  问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。

  [设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。

  将斜率与定点代入点斜式直线方程可得:

  说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。

  注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。

  (2)斜截式方程中的k和b有明显的几何意义。

  (3)斜截式方程的使用范围和斜截式一样。

  问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?

  [设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。

  练习:1。。

  2。直线的斜率为2,在轴上的截距为,求直线的方程。

  [设计意图]让学生明确截距的含义。

  3。直线过点,它的斜率与直线的斜率相等,求直线的方程。

  [设计意图]让学生进一步理解直线斜截式方程的结构特征。

  4。已知直线过两点和,求直线的方程。

  [设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。

  例2:已知直线,试讨论

  (1)与平行的条件是什么?

  (2)与重合的条件是什么?

  (3)与垂直的条件是什么?

  说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。

  ②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。

  ③若直线的斜率不存在,与之平行、垂直的条件分别是什么?

  练习:

  问题8:本节课你有哪些收获?

  要点:

  (1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。

  (2)两种形式的方程要在熟记的基础上灵活运用。

  总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。

高一下册数学教学计划7

  高一年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。数学网高中频道整理了高一数学下册教学计划,希望能帮助教师授课!

  本学期高一数学备课组的工作紧紧围绕学校、教科处及教研组的计划安排来开展,以教学改革为动力、以学校创建为前提、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本学期工作。

  一、指导思想

  以教研组工作计划为指导,按照均衡、优质、高效原则,精诚团结,和谐创新,加强科组建设,提高高一数学备课组的整体实力;努力完成本学期的教学目标,进一步提高作为未来公民所必要的数学素养,以满足学生发展与社会进步的需要。这学期的工作重点是继续进行新课标和新教材的研究,要着重抓好差生辅导和尖子生的培养,让绝大部分学生跟上教学进度。

  二、工作思路

  1.在学校科研处和教务处的领导下,有计划地组织好全组教师的学习与培训工作,特别是搞好新课程标准和新教材的学习、研究和交流,落实学校的办学理念。推广现代教育科研成果,定期开展多种形式的教研活动。

  2.以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建主动发展型课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式。

  3.教学研究要以集体备课为基础,以作课、听课、评课活动以及出考卷活动为载体,以课题研究、论文、案例撰写为提高,在研究状态下理性的工作。培养本组教师养成教学反思的习惯,

  三、教材分析(结构系统、单元内容、重难点)

  必修5:

  第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;

  第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;

  第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与基本不等式;难点是二元一次不等式(组)及应用;

  必修2:

  第一章:立体几何初步。重点是空间几何体的三视图和直观图及表面积与体积,直线与平面平行及垂直的判定及其性质;难点是空间几何体的三视图,直线与平面平行及垂直的判定及其性质;

  第二章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;圆与方程;重点是圆的'方程及直线与圆的位置关系;难点是直线与圆的位置关系。

  四、学情分析

  经过一学期的观察发现学生的基础知识水平、学习自觉性与基本学习方法比较欠缺,学生心理不稳定,空间思维、抽象思维、逻辑思维较差,而本学期所要学习的内容包含了高中数学中重要而难学的数列、不等式、立体几何部分,因而教学时尽可能以课本为本,注重基础和规范,不随意拔高难度,努力使绝大部分学生打好三基。教学时在完成市教学进度的前提下,尽可能的放慢速度,确保绝大部分学生的学习质量。平时教学中老师要注意不断鼓励和欣赏学生的优点和进步,使学生不断体验到学习数学的乐趣。平时测试要注重考查三基,严格控制难度,使绝大部分学生及格,使学生体验到进步和成功的喜悦。同时需进一步加强学法指导,多于学生进行情感交流。

  五、工作目标

  1、狠抓教学常规和学习常规的贯彻落实。在数学教学研究中努力做到三主(教学研究以学习理论为主导、大纲教材课程标准为主体、探索教学模式为主线)和三有(教学研究要对教学实践有指导、对教学质量有促进、对教师有提高)。

  2、加强现代教育教学理论的学习,积极进行课堂教学改革试验、逐步形成本学科特色,把我组建设成一个团结协作、富有开拓创新精神的先进集体。

  3、把对新课程标准的学习与对新教材的研究结合起来,力求使每一位数学老师都能较好地领会新课程标准的基本理念和目标,较好地把握数学学习内容中有关数感、符号感、空间观念、统计观念、应用意识、推理能力等核心概念的内涵和要求,初步掌握所教教材的结构特点、每章每节教材的地位、作用和目标要求。

  4、认真做好义务教育数学实验教材和高中新教材的阶段总结,加强教法的研究,注意总结和发现典型的教学案例,积极组织本组教师做好资料、信息收集工作,撰写教育教学论文、案例,争取在全国等各级论文评比中获奖。

  六、具体措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  7、积极做好集体备课工作,达到内容统一、进度统一、目标统一、例习题统一、资料统一、测试统一;上好每一节课,及时对学生的学习进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

高一下册数学教学计划8

  一、班级情况分析

  本班共有学生45人,其中男生25人,女生20人,大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展,具备了一定的学习数学的能力。在课堂上能积极主动地参与学习过程,具有初步观察、分析、自学、表达、操作等能力。但有部分学生基础知识与基本学习技能差,还没形成学习习惯,学习较吃力,还有个别同学,上课不认真听讲,不能自觉的完成学习任务,需要老师督促并辅导。本学期在教学中,将重点抓好学习上有困难的学生,面向全体,创设愉快情境教学,激发他们的学习动机,进入最佳学习的动态。

  二、教材分析:

  本册教材包括期初复习、分数乘法、分数除法、简单的统计(五)、分数四则混合运算、稍复杂的'分数应用题、百分数、圆、期末复习等。

  第一单元分数乘法

  本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。利用本单元所学知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,分数四则混合运算和应用题以及百分数的重要基础。

  重点:分数乘法意义和计算法则。

  难点:理解分数乘法的意义,根据分数乘法的意义去解答这类应用题;分数乘法计算法则的推导。

  关键:通过应用题从整数乘法中常见的数量关系,结合示意图进行教学。

  第二单元分数除法

  本单元教材是以整数除法的意义、分数乘法的意义,以及解简易方程为基础进行教学的。学生理解、掌握了本单元的这些知识,不仅可以解决有关的实际问题,同时也为学习分数四则混合运算和应用题以及百分数打下基础。

  重点:①一个数除以分数的意义以及计算方法。

  ②已知一个数的几分之几是多少,求这个数的应用题。

  难点:一个数除以分数的计算法则的推导。

  关键:利用直观图,推导分数除法法则时,要把计算与分数乘、除法的意义紧密联系起来。

高一下册数学教学计划9

  教学内容

  本册教材包括下面一些内容:一个因数是一位数的乘法,除数是一位数的除法,千米和吨的认识,混合运算和两步计算应用题,长方形、正方形和平行四边形。

  一、教学要求

  1、使学生掌握一个因数是一位数的乘法和除数是一位数的除法的笔算法则,比较熟练地笔算乘、除法;比较熟练地口算用一位数乘整十、整百、整千的数和两位数(每位乘积不满10)以及相应的除法;会用乘法验算除法(包括有余数的除法),养成验算的习惯。

  2、使学生初步掌握混合运算的顺序,会计算比较容易的三步式题。

  3、使学生认识长度单位毫米和分米,初步建立1毫米、1分米、1千米的长度观念,知道1千米=1000米;认识质量单位吨,知道1吨=1000千克;会进行长度和质量的简单计算。

  4、使学生初步掌握长方形、正方形的特征。初步认识平行四边形。会在方格纸上画长方形和正方形。知道周长的含义,会计算长方形和正方形的周长。

  5、使学生进一步学会分步解答一些含有三个已知条件的两步应用题,并学会解答含有两个已知条件的两步应用题。

  二、各单位的教学重点、难点、关健。

  (一)第一单元:一个因数是一位数的乘法

  1、重点:理解和掌握一个因数是一位数的乘法法则。

  2、难点:一位数乘二、三、四位数,连续进位的乘法是教学的难点;一个因数中间有0的`乘法是学生学习乘法的难点。

  3、关健:讲清一位数乘多位数的算理,在理解算理的基础上掌握计算方法。

  (二)第二单元:除数是一位数的除法

  1、重点:

  (1)在理解算理的基础上,掌握口算一位数除两位数的口算方法和除数是一位数的除法的笔算法则。

  (2)理解“已知一个数的几倍是多少求这个数”的意义,会解答“已知一个数的几倍是多少求这个数”的应用题。

  2、难点:

  (1)商的中间、末尾有0的一位数除法。

  (2)理解和掌握“已知一个数的几倍是多少求这个数”的应用题结构特征和解答方法。

  3、关健:教学中注重直观演示,引导学生通过动手操作学具,理解除法式题除的顺序和商的书写位置,及理解应用题的数量关系。

  (三)第三单元:千米和吨的认识

  1、重点:初步建立毫米、分米、千米、吨的观念。

  2、难点:建立1千米长、1吨重的观念,理解“千米”的实际长短和“吨”的轻重。

  3、关健:在教学中注意通过实践、观察和推理,使学生初步建立千米、吨的概念。

  (四)第四单元:混合运算和两步应用题

  1、重点:

  (1)掌握含有两级运算的三步混合运算式题的运算顺序及计算方法。

  (2)掌握分析和解答三个已知条件和含有两个已知条件的两步计算应用题的方法。

  2、难点:正确分析并解答含有两个已知条件的两步应用题。

  3、关健:分析和解答两步应用题,关健是认真分析题目中的数量关系找出隐蔽的中间问题。

  (五)第五单元:长方形、正方形和平行四边形

  1、重点:

  (1)掌握长方形、正方形和平行四边形的特征,初步认识平行四边形。

  (2)理解周长的含义,能正确熟练地计算长方形和正方形的周长。

  2、难点:理解周长的概念及正方形、长方形周长的计算方法。

  3、关健:教学中注重对图形特征的认识和周长概念的建立,充分运用直观手段,加强教具的演示及学具操作,让学生手动、脑想、眼看,使学生在多种感官的协调活动中积累对图形特征及周长含义的感性认识。

  三、教学进度及课时安排

  每周上5课时正课,大约安排正课16周,留机动时间一周。总复习两个周,放在期末复习时间内进行。

  (一)、一个因数是一位数的乘法(17课时)

  1、口算乘法(3课时左右)

  2、笔算乘法(12课时左右)

  整理和复习(2课时左右)

  (二)、除数是一位数的除法(19课时)

  1、口算除法(3课时左右)

  2、笔算除法(14课时左右)

  整理和复习(2课时左右)

  (三)、千米和吨的认识(6课时)

  1、毫米、分米的认识(2课时左右)

  2、千米的认识(2课时左右)

  3、吨的认识(2课时左右)

  实践活动:有多远(1课时左右)

  (四)、混合运算和两步应用题(13课时)

  1、混合运算(2课时左右)

  2、应用题(9课时左右)

  整理和复习(2课时左右)

  (五)、长方形、正方形和平行四边形(5课时)

  1、平行四边形的初步认识(2课时左右)

  2、正方形、长方形周长的计算(3课时左右)

  实践活动:数学万花筒(1课时)

  (六)、总复习(5课时)

  四、工作措施

  1、充分利用电教手段,提高课堂教学效率。

  2、加强口算训练,提高学生口算能力。

  3、注意联系学生的生活实际,注意培养学生学习数学的兴趣和良好的学习习惯。结合教材内容,根据学生的年龄特点,安排形式多样或有趣的练习题和数学游戏。

  4、注意引导学生提示知识间的联系,探索规律。

  5、注意培养学生抽象、概括能力;分析、综合能力;判断、推理能力。

  6、结合教材内容培养学生思维的灵活性和创新意识。

  7、组建学生“一帮一”学习互助小组,力争优生做到不拉下一个后进生。

  8、狠抓基础知识的教学,打好扎实的基础。

高一下册数学教学计划10

  一、基本情况分析:

  1、学生情况分析:4个重点班的学生,基础比较好,学习积极性高。普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。

  2、教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。

  二、教学内容:

  本学期的数学教学内容是高一数学下册,包括第四章《三角函数》和第五章《平面向量》。按照数学教学大纲的要求,第四章教学需要36个课时(不包含考试与测验的时间);第五章的教学需要22个课时,共计需要58个课时。本学期有两次月考和五一长假,实际授课时间为18周,按每周6课时计算,数学课时达到110课时左右,时间相当充足。这为我们数学组全面贯彻“低切入、慢节奏”的教学方针提供了保障,也是我们提高学生数学水平的又一次极好的机会。

  三、本学期教学目标

  在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

  能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的.进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

  培养学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

  四、教学计划

  本学期的期中考试(预计在4月14号至4月17号进行)涵盖的内容为第四章的前9节,由于课时量充足,第10节“正切函数的图像和性质”以及第11节“已知三角函数值求角”将在上半学期讲授,这样下半个学期的教学任务为30个课时。

  我们备课组经过认真的思索、充分的讨论,将期中考试前的教学进度安排如下:

  (一单元)任意角的三角函数

  §4.1角的概念的推广3课时

  §4.2弧度制3课时

  §4.3任意角的三角函数3~4课时

  §4.4同角三角函数的基本关系4课时

  §4.5正弦、余弦的诱导公式4课时

  复习课(习题课)4课时

  单元测试及讲评2课时

  (二单元)两角和与差的三角函数

  §4.6两角和与差的正弦、余弦、正切7课时

  习题课3课时

  §4.7两倍角的正弦、余弦、正切4课时

  习题课2课时

  单元测试及讲评2课时

  (三单元)三角函数的图象及性质

  §4.8正弦、余弦函数的图象和性质5课时

  习题课2课时

  §4.9函数的图象4课时总计授课53课时,余下课时可安排期中复习。

  期中考试后的授课计划:

  §4.10正切函数的图象和性质3课时

  §4.11已知三角函数值求角4课时

  习题课2课时

  第四章复习4课时

  第五章

  (一单元)向量及其运算

  §5.1向量1课时

  §5.2向量的加减法2课时

  §5.3实数与向量的积3课时

  §5.4平面向量的坐标计算3课时

  §5.5线段的定比分点2课时

  §5.6平面向量的数量积及运算律3课时

  §5.7平面向量数量积的坐标表示2课时

  §5.8平移2课时

  习题课3课时

  单元测试与讲评(随堂)2课时

  §5.9正弦、余弦定理5课时

  §5.10解斜三角形应用举例2课时

  实习与研究性课题4课时

  习题课3课时

  单元测试与讲评2课时

  总结:以上就是本学期的数学教学计划,希望能对你有所帮助,如有不足之处,请批评指正!