数学之美读后感

时间:2024-11-11 读后感 我要投稿

数学之美读后感

  看完一本名著后,相信大家一定领会了不少东西,何不写一篇读后感记录下呢?那么我们如何去写读后感呢?下面是小编为大家收集的数学之美读后感,仅供参考,大家一起来看看吧。

数学之美读后感

数学之美读后感1

  第8章里的“索引”,作者讲到谷歌面试产品经理的一道题目:如何向你的奶奶解释搜索引擎。关于这个问题,好的回答据说是用图书馆的索引卡片做类比。

  我奶奶是个文盲,一生为农,日出而作,日落而息。她很少看电视,更别说图书馆。所以用图书馆的例子,对我们来说,很生动;对她来说,很生涩。

  我们村的田地是按照地形、土质和流水等来划分的,计有一等地、二等地和三等地。一般情况下,一等地用来种水稻,二等地用来种菜,三等地用来种水果。

  所以当我奶奶想要给我摘桔子的时候,她肯定不会从一等地或者二等地一块地一块地找过来,而是直接跑到三等地(一般就是山上)。

  像这样的索引,是基于脑子里的“数据库”,因为田地不会很多,多了也来不及种,所以跟布尔代数没什么关系。但是这样解释,我奶奶就会大概明白了。我奶奶生前一次电脑也没用过,跟她解释这些,唯一的意义是,她会觉得我没有敷衍她,这会使她欣慰——如果有机会解释的话。

  杨小凯曾经说,如果张五常多加注重使用数学模型,那诺奖也许就拿下了。张五常对此不以为然,反以为傲,自诩当今世上只有科斯、阿尔钦和他才敢只用文字,不借助数学模型就在经济学界占有一席之地。

  当然,张五常也不是彻底否定数学的作用,他认为能够用文字解释的经济学原理,不必使用数学对其复杂化。

  数学在信息学和经济学里都有广泛应用,但是在信息科学方面,对数学作用大小的争论就没有经济学那么大了。

  我们常说搜索引擎的竞价广告,就可能经历到第三方公司,通常他们宣传自己是谷歌或者别的`搜索引擎公司的代理商,然后通过不正当手段为客户提高网页的排名。谷歌在消除网络作弊方面做了很多努力,通过修改排序算法来为搜索者提供更加准确实效的信息。

  “作弊的本质是在网页排名信号中加入噪音,因此反作弊的关键是去噪音。沿着这个思路可以从根本上提高搜索算法抗作弊的能力。”我们公司就是吃了这个亏,交了不少钱给第三方公司,结果算法一变,关键词的排名从前三下降到前三页没影。

  社交搜索正在雄起,但是如果想要在传统的搜索引擎中占据有利排名,我想,第三方公司的技术水平是很关键的。

  大学专业课里,数电总是要比模电简单不少。

  自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指时间和数值上都是连续变化的信号。在实际电路中,模/数转换是一个很重要的过程,将预处理的模拟信号经过模/数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易集成化等。

  简而言之,如果没有数学,就没有数字信号处理的概念,也就无法进行信号的传输,而数字信号传输在大规模的集成电路里是必不可少的,这是通信成功的基本要求。

  之前看到有人说如果高中看这本书,也许数学就是另一番天地,会有所突破。我不觉得,如果高中看这种书,我想,大多数人还是会对数学更加望而却步。本书更适合通信电子这些专业的学生,在学习专业课的时候辅助阅读,对理解通信原理、数电模电等都有更形象生动的想法。

数学之美读后感2

  看完《浪潮之巅》,了解了硅谷很多公司尤其是互联网公司的沉浮,对吴军的书就非常感兴趣,看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。

  我自己在交大学的是工科(虽然没怎么上过课),小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。看这本书的过程中找到了很多高中在看竞赛书的感觉,里面提到的很多概率论(不等式)、图论、数论的.知识是高中数学联赛复试的重点,高中的时候已经研究的很深了,不过大学荒废了之后也忘得差不多了,书中提到的很多定理还很有亲切感

  书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax说得对,也许是出版社为了卖书取得名字

  不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人(即使他自己会自谦说是一个二流的工程师之类)

  书中具体的模型就不介绍了,说几点我学到的知识,能列出来的都是看完还有点印象的:

  1.在互联网的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?

  2.搜索领域中,语言是如何统计的,尤其是如何通过概率模型进行分词

  3.搜索引擎是如何工作的—网络爬虫是怎么回事儿

  4.PageRank是怎么回事?为了解决什么问题?

  5.密码与解密领域的数学模型,尤其提到的二战时候的各种解密的趣事儿,提到的电视剧《暗算》打算抽空看下

  6.拼音输入法的数学模型

  7.、文本自动分类的模型

  ……

  看完之后最大的感受就是:

  1.数学模型巨大作用,推动着新技术的发展

  2.攻城师是一个伟大的职业,能够运用这些知识转化为生产力,非常牛叉

  3.书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。

  但同时技术很大的作用是用来解决实际问题的,书中提到的各个数学模型、各种方法都是为了解决人们的需求或者业务的需求,毕竟公司不是科学研究所,所以追求通过技术直接解决用户需求或者做成易用的工具给业务人员、运营人员来间接解决用户需求是挺重要的,可能不是技术人员觉得做到80分就可以了,而是用户、使用工具的人觉得做到80分是一个重要的衡量

  提到“工具”,想到赵赵说过的一句话:“不好用就等于没有”,可能就是这个点,同时运用工具的人必须好好的运用,如果用不好甚至不用就太对不起技术了

数学之美读后感3

  近来,我通过中国大学MOOC的慕课《数学建模》获悉一部叫《牛津通识读本》的新出版科普系列。同时购入的有六本——《数学》《法律》《佛学概论》等。由于告知该书的慕课是数学课,我首先阅读的是《数学》。

  令我意外的是,本系列的书每本篇幅都短小精悍得让人愉悦(英文类书系列名就叫A Very ShortIntroduction)。就这本16开大小的《数学》中,有实际内容的只100页左右,剩下的有数十多页附注/答疑,与及100多页的英文原稿(原书作者高尔斯是英国学者)。本书内容质量非常高,并未使『西方当代学科科普』这个标签失色。再考虑到其篇幅如此短小,看来,以后为非理工科班出身的青年们推荐数学科普书,就不必只记得伊恩·斯图尔特与马丁·加德纳了。

  虽然这是数学科普,但作者可深知读者心。西方作者所著的数学科普,一向都很能熟练地脱公式脱符号讲问题。与同类书籍比较之下,本书还有个小小的特点:其章节叙述顺序,既不硬从数学史(人类认知史)的流程,也不完全顺应个体认知心理学(教育学)的顺序。开篇破题他选的议题是『数学模型』,非数学专业学生最能适应的一种破题点;然后第二章紧紧承接主题『模型化』,开谈『抽象化』。这个过程的叙述行云流水。我感觉作者很懂怎样说该说的、省去不必说的、跳过不能说的。

  第二章《数与抽象》中,作者在引入复数时,首先不能免俗地做了其他科普书差不多的工作:-1的开平方根是复数的定义blabla;然后,他将议题转入更接近上游本质的、但也许常人可能也会想过的问题:形式与实在的关系。

  不是说『-1的开平方根』是复数单位i吗?但似乎有两个数的平方等于-1啊(也即i与-i),到底哪个才是正宗的『复数单位』?如果说i是嘛,那么凭什么-i不是?给我讲清楚啊——对吧?我猜,每个人在其漫长的人生中,都曾经想问过这类问题吧:『为嘛数变量用abc、角变量用αβγ』『为嘛求导符用的是一个点』『为嘛积分符像条蛇』『为嘛积分式里有个d』诸如此类。这些问题并不无聊也不白痴,只是常人很难给出有意义的回答而已;它们中的每个往往都蕴含着16世纪数学大师们的智慧精华。当然,本书没有解答所有这类奇离古怪的问题(这不是《十万个为什么》)。在本书里,作者做的是教授课间做的那种事——随便跟好奇的学生聊聊天,证明过程少说了个『在这个条件下』待会再补上。上面提到的『i与-i哪个才是复数单位』这个议题,这段简短的`讨论,同时也扮演了下一章《证明》的引子这个角色。

  进度到第三章《证明》结束之后,对读者而言,或许就只剩一个小时的阅读时间而已了。后面的章节,议题越来越抽象(空间、维度、距离、无穷等),正要抵达最有趣的部分(集合论)时,突然话锋一转,谈起了与抽象几乎相对的另一端:计算理论与数论;然后,本书的主体竟在此突然收官。看来,作者多多少少还保持了清醒,未过度狂热,未打算将每个有趣的命题都灌到读者脑里。在我看来,那种『X猫X气三千问』的大杂烩式科普其实是很不人道的。大家和我一样都读过一遍又一遍的七桥问题与雪花曲线,没必要再来一次了。这些老生常谈的话题,在本书里各只占了一页的篇幅。太好了。

数学之美读后感4

  前一阵子因兴趣研究CMUSphinx这套库的应用不得要领,就去查看了下一些语音识别的基本原理的文章,偶然碰到了数学之美。其实浪潮之巅也是因此开始看的、结果先一步看完了,毕竟一本历史书,一本介绍数学和语言处理的,难度不同

  说实话,因为初中高中荒废了太多时间,我的英文和数学基础比较差,我大学的数学都是勉强修过的。一直以来数学对我是一个很恐怖的学科,也不知道为什么计算机专业对数学要求比较高。我个人就是数学分数很低,但是专业课学的还不错,唯一好点的数学科目就是离散数学吧,另外的工科数学分析和高等代数都是惨不忍睹的

  看完这本书后,我发现我还真是低估了数学的作用,一个复杂的语言识别过程,用统计语言模型竟然用那么简单的数学模型就解决了,这对我的冲击很大。另一个对我影响比较大的就是余弦定理和新闻的分类。以前那些各种三角函数的变换、三角函数,各种向量,各种空间图形在我印象中就只能用于画设计图,或者搞空间物理化学等基础学科的应用上,想着“这种东西和计算机编程有什么关系?要计算角度,库里不都提供了吗?”,哪成想到改变一下思路,改变一下方法,就简单的把那么复杂的分裂问题给解决了。现在想想我当初想法还真是幼稚啊,可惜覆水难收,过去的时间已经回不来了,但至少我现在明白了数学的重要性,总能想办法弥补的。

  不得不说国内的教科书还真是太死板了。很多书上,先不说没讲应用领域和这个能干吗,有些教科书连推导过程也没说明白。像我大学时候的那几本高代高数的'教科书,在某一步关键的过程写一句“显而易见”,然后就莫名其妙的出现了结果,这让我们基础差的人情何以堪啊,更何况我问了那些数学好的,他们想推导出那一步也要想好久。后来换了一下同济大学版,发现同样的定理,同样的范围,就是理解起来容易了不少。果然好书和差一点的书差别真不少。所以我就在网上整理了一些好的数学书籍,等会儿x就贴到文后,以后慢慢补。

  "技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余。” ,然后吴军先生用搜索反作弊的例子漂亮的解释了这两种差别。我以前做过的项目里,如果出现没想过的情况,就加一个异常处理处理特殊情况,本来很简单的东西,愣是被我搞复杂了。现在想回来,那时候境界太低,连开始的本质和原理都没弄清楚,就埋头搞下去了,以后要多注意点。

  我一向喜欢实用性强的方法和工具,在这书里我特别喜欢阿米特·辛格博士的那一章。吴军博士就用寥寥几页的描述中讲解了辛格博士的处理事情的方法和原则,先帮用户解决主要的问题,再决定要不要纠结在次要的部分上;要知道修改代码的所作所为,知其所以然;能用简单方法解决就用简单的,可读性很重要。

  不过中间有两个部分没搞明白,最大熵模型和贝叶斯网络,没搞懂为什么能解决那些问题。贝叶斯网络还能稍微理解,少了马尔科夫链的线性约束,更自由;但最大熵模型真搞不懂为什么那么好用,以后继续研究。

  总之这是一本很好的书,推荐大家读一下。

数学之美读后感5

  这本书一共3章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。

  第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码-传输-解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。

  第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。

  这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模数转换是一个很重要的过程,将预处理的模拟信号经过模数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。

  简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。

  作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这,也是大部分问题的主要根源。

  罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的`作用。"哪里有数,哪里就有美"。在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

  吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余"。回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。